Gotowa bibliografia na temat „Reaction-diffusion”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Reaction-diffusion”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Reaction-diffusion"

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations". Mathematica Bohemica 139, nr 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Dalík, Josef. "A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems". Applications of Mathematics 36, nr 5 (1991): 329–54. http://dx.doi.org/10.21136/am.1991.104471.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gurevich, Pavel, i Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis". Mathematica Bohemica 139, nr 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Drábek, Pavel, Milan Kučera i Marta Míková. "Bifurcation points of reaction-diffusion systems with unilateral conditions". Czechoslovak Mathematical Journal 35, nr 4 (1985): 639–60. http://dx.doi.org/10.21136/cmj.1985.102055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Trimper, Steffen, Uwe C. Täuber i Gunter M. Schütz. "Reaction-controlled diffusion". Physical Review E 62, nr 5 (1.11.2000): 6071–77. http://dx.doi.org/10.1103/physreve.62.6071.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Witkin, Andrew, i Michael Kass. "Reaction-diffusion textures". ACM SIGGRAPH Computer Graphics 25, nr 4 (2.07.1991): 299–308. http://dx.doi.org/10.1145/127719.122750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Henry, B. I., i S. L. Wearne. "Fractional reaction–diffusion". Physica A: Statistical Mechanics and its Applications 276, nr 3-4 (luty 2000): 448–55. http://dx.doi.org/10.1016/s0378-4371(99)00469-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Nicolis, Gregoire, i Anne Wit. "Reaction-diffusion systems". Scholarpedia 2, nr 9 (2007): 1475. http://dx.doi.org/10.4249/scholarpedia.1475.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Chen, Mufa. "Reaction-diffusion processes". Chinese Science Bulletin 43, nr 17 (wrzesień 1998): 1409–20. http://dx.doi.org/10.1007/bf02884118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Eisner, Jan. "Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions". Mathematica Bohemica 125, nr 4 (2000): 385–420. http://dx.doi.org/10.21136/mb.2000.126272.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Reaction-diffusion"

1

He, Taiping. "Reaction-Diffusion Systems with Discontinuous Reaction Functions". NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-03192005-101102/.

Pełny tekst źródła
Streszczenie:
This dissertation studies coupled reaction diffusion systems with discontinuous reaction functions. It includes three parts: The first part is concerned with the existence of solutions for a coupled system of two parabolic equations and the second part is devoted to the monotone iterative methods for monotone and mixed quasimonotone functions. Various monotone iterative schemes are presented and each of these schemes leads to an existence-comparison theorem and the monotone convergence of the maximal and minimal sequences. In the third part, the monotone iterative schemes are applied to compute numerical solutions of the system. These numerical solutions are based on the finite element method which gives a finite approximation of the coupled system. Numerical results for some scalar parabolic bounday problems and a coupled system of parabolic equations are also given.
Style APA, Harvard, Vancouver, ISO itp.
2

Yangari, Sosa Miguel Ángel. "Fractional reaction-diffusion problems". Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/115538.

Pełny tekst źródła
Streszczenie:
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática
This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power x^b, where b < 2\alpha and \alpha\in (0,1) is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction.
Style APA, Harvard, Vancouver, ISO itp.
3

Yangari, Sosa Miguel Angel. "Fractional reaction-diffusion problems". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2270/.

Pełny tekst źródła
Streszczenie:
Cette thèse porte sur deux problèmes différents : dans le premier, nous étudions le comportement en temps long des solutions des équations de réaction diffusion 1d-fractionnaire de type Fisher-KPP lorsque la condition initiale est asymptotiquement de type front et décroît à l'infini plus lentement que, où et est l'indice du laplacien fractionnaire (Chapitre 2). Dans le second problème, nous étudions la propagation asymptotique en temps des solutions de systèmes coopératifs de réaction-diffusion (Chapitre 3). Dans le premier problème, nous démontrons que les ensembles de niveau des solutions se déplacent exponentiellement vite en temps quand t tend vers l'infini. De plus, une estimation quantitative du mouvement de ces ensembles est obtenue en fonction de la décroissance à l'infini de la condition initiale. Dans le second problème, nous montrons que la vitesse de propagation est exponentielle en temps et nous trouvons un exposant précis qui dépend du plus petit ordre des laplaciens fractionnaires considérés et de la non-linéarité. Nous notons aussi que cet indice ne dépend pas de la direction spatiale de propagation
This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power , where and is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction
Style APA, Harvard, Vancouver, ISO itp.
4

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Pełny tekst źródła
Streszczenie:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species, and we want to understand at which speed this invasion takes place. To answer this question, we set up a new method to study the speed of propagation when fractional diffusion is at stake and apply it on three different problems. Part I of the thesis is devoted to an analysis of the asymptotic location of the level sets of the solution to two different problems : Fisher-KPP models in periodic media and cooperative systems, both including fractional diffusion. On the first model, we prove that, under some assumptions on the periodic medium, the solution spreads exponentially fast in time and we find the precise exponent that appears in this exponential speed of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. On the second model, we prove that the speed of propagation is once again exponential in time, with an exponent depending on the smallest index of the fractional Laplacians at stake and on the reaction term. Part II of the thesis deals with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as 'the field' and the line to 'the road', as a reference to the biological situations we have in mind. Indeed, it has long been known that fast diffusion on roads can have a driving effect on the spread of epidemics. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. Contrary to the precise asymptotics obtained in Part I, for this model, we are not able to give a sharp location of the level sets on the road and in the field. The expansion shape of the level sets in the field is investigated through numerical simulations.
Esta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Style APA, Harvard, Vancouver, ISO itp.
5

Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fei, Ning Fei. "Studies in reaction-diffusion equations". Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Grant, Koryn. "Symmetries and reaction-diffusion equations". Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Frömberg, Daniela. "Reaction Kinetics under Anomalous Diffusion". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16374.

Pełny tekst źródła
Streszczenie:
Die vorliegende Arbeit befasst sich mit der Verallgemeinerung von Reaktions-Diffusions-Systemen auf Subdiffusion. Die subdiffusive Dynamik auf mesoskopischer Skala wurde mittels Continuous-Time Random Walks mit breiten Wartezeitverteilungen modelliert. Die Reaktion findet auf mikroskopischer Skala, d.h. während der Wartezeiten, statt und unterliegt dem Massenwirkungsgesetz. Die resultierenden Integro-Differentialgleichungen weisen im Integralkern des Transportterms eine Abhängigkeit von der Reaktion auf. Im Falle der Degradation A->0 wurde ein allgemeiner Ausdruck für die Lösungen beliebiger Dirichlet-Randwertprobleme hergeleitet. Die Annahme, dass die Reaktion dem Massenwirkungsgesetz unterliegt, ist eine entscheidende Voraussetzung für die Existenz stationärer Profile unter Subdiffusion. Eine nichtlineare Reaktion stellt die irreversible autokatalytische Reaktion A+B->2A unter Subdiffusion dar. Es wurde ein Analogon zur Fisher-Kolmogorov-Petrovskii-Piscounov-Gleichung (FKPP) aufgestellt und die resultierenden propagierenden Fronten untersucht. Numerische Simulationen legten die Existenz zweier Regimes nahe, die sowohl mittels eines Crossover-Argumentes als auch durch analytische Berechnungen untersucht wurden. Das erste Regime ist charakterisiert durch eine Front, deren Breite und Geschwindigkeit sich mit der Zeit verringert. Das zweite, fluktuationsdominierte Regime liegt nicht im Geltungsbereich der kontinuierlichen Gleichung und weist eine stärkere Abnahme der Frontgeschwindigkeit sowie eine atomar scharf definierte Front auf. Ein anderes Szenario, bei dem eine Spezies A in ein mit immobilen B-Partikeln besetztes Medium hineindiffundiert und gemäß dem Schema A+B->(inert) reagiert, wurde ebenfalls betrachtet. Diese Anordnung wurde näherungsweise als ein Randwertproblem mit einem beweglichen Rand (Stefan-Problem) formuliert. Die analytisch gewonnenen Ergebnisse bzgl. der Position des beweglichen Randes wurden durch numerische Simulationen untermauert.
The present work studies the generalization of reaction-diffusion schemes to subdiffusion. The subdiffusive dynamics was modelled by means of continuous-time random walks on a mesoscopic scale with a heavy-tailed waiting time pdf lacking the first moment. The reaction was assumed to take place on a microscopic scale, i.e. during the waiting times, obeying the mass action law. The resultant equations are of integro-differential form, and the reaction explicitly affects the transport term. The long ranged memory of the subdiffusion kernel is modified by a factor accounting for the reaction of particles during the waiting times. The degradation A->0 was considered and a general expression for the solution to arbitrary Dirichlet Boundary Value Problems was derived. For stationary solutions to exist in reaction-subdiffusion, the assumption of reactions according to classical rate kinetics is essential. As an example for a nonlinear reaction-subdiffusion system, the irreversible autocatalytic reaction A+B->2A under subdiffusion is considered. A subdiffusive analogue of the classical Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) equation was derived and the resultant propagating fronts were studied. Two different regimes were detected in numerical simulations, and were discussed using both crossover arguments and analytic calculations. The first regime is characterized by a decaying front velocity and width. The fluctuation dominated regime is not within the scope of the continuous description. The velocity of the front decays faster in time than in the continuous regime, and the front is atomically sharp. Another setup where reactants A penetrate a medium initially filled with immobile reactants B and react according to the scheme A+B->(inert) was also considered. This problem was approximately described in terms of a moving boundary problem (Stefan-problem). The theoretical predictions concerning the moving boundary were corroborated by numerical simulations.
Style APA, Harvard, Vancouver, ISO itp.
9

Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à l'étude du comportement en temps long, et plus précisément de phénomènes de propagation rapide, des équations de réaction-diffusion de type Kisher-KPP avec diffusion fractionnaire. Ces équations modélisent, par exemple, la propagation d'espèces biologiques. Sous certaines hypothèses, la population envahit le milieu et nous voulons comprendre à quelle vitesse cette invasion a lieu. Pour répondre à cette question, nous avons mis en place une nouvelle méthode et nous l'appliquons à différents modèles. Dans une première partie, nous étudions deux problèmes d'évolution comprenant une diffusion fractionnaire : un modèle de type Fisher-KPP en milieu périodique et un système coopératif. Dans les deux cas, nous montrons, sous certaines conditions, que la vitesse de propagation est exponentielle en temps, et nous donnons une expression précise de l'exposant de propagation. Nous menons des simulations numériques pour étudier la dépendance de cette vitesse de propagation en la donnée initiale. Dans une seconde partie, nous traitons un environnement bidimensionnel, dans lequel le terme de reproduction est de type Fisher-KPP et le terme diffusif est donné par un laplacien standard, excepté sur une ligne du plan où une diffusion fractionnaire intervient. Le plan est nommé "le champ" et la ligne "la route", en référence aux situations biologiques que nous voulons modéliser. Nous prouvons que la vitesse de propagation est exponentielle en temps sur la route, alors qu'elle dépend linéairement du temps dans le champ. La forme des lignes de niveau dans le champ est étudiée au travers de simulations numériques
This thesis focuses on the long time behaviour, and more precisely on fast propagation, in Fisher-KPP reaction diffusion equations involving fractional diffusion. This type of equation arises, for example, in spreading of biological species. Under some specific assumptions, the population invades the medium and we want to understand at which speed this invasion takes place when fractional diffusion is at stake. To answer this question, we set up a new method and apply it on different models. In a first part, we study two different problems, both including fractional diffusion : Fisher-KPP models in periodic media and cooperative systems. In both cases, we prove, under additional assumptions, that the solution spreads exponentially fast in time and we find the precise exponent of propagation. We also carry out numerical simulations to investigate the dependence of the speed of propagation on the initial condition. In a second part, we deal with a two dimensional environment, where reproduction of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which fractional diffusion takes place. The plane is referred to as "the field" and the line to "the road", as a reference to the biological situations we have in mind. We prove that the speed of propagation is exponential in time on the road, whereas it depends linearly on time in the field. The expansion shape of the level sets in the field is investigated through numerical simulations
Style APA, Harvard, Vancouver, ISO itp.
10

Coville, Jerome. "Equations de reaction diffusion non-locale". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à l'étude des équations de réaction diffusion non-locale du type $u_(t)-(\int_(\R)J(x-y)[u(y)-u(x)]dy)=f(u)$. Ces équations non-linéaires apparaissent naturellement en physique et en biologie. On s'intéresse plus particulièrement aux propriétés (existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-linéarités $f$ (bistable, ignition, monostable) sont étudiées. L'existence dans les cas bistable et ignition est obtenue via une technique d'homotopie. Le cas monostable nécessite une autre approche. L'existence est obtenue via une approximation des équations sur des semi-intervales infinis $(-r,+\infty)$. L'unicité et la monotonie des solutions sont quand elles obtenues par méthode de glissement. Le comportement asymptotique ainsi que des formules pour les vitesses sont aussi établis.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Reaction-diffusion"

1

Ben, De Lacy Costello, i Asai Tetsuya, red. Reaction-diffusion computers. Boston: Elsevier, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

1955-, Caristi Gabriella, i Mitidieri Enzo, red. Reaction diffusion systems. New York: Marcel Dekker, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cherniha, Roman, i Vasyl' Davydovych. Nonlinear Reaction-Diffusion Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65467-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

J, Brown K., Lacey A. A i Heriot-Watt University. Dept. of Mathematics., red. Reaction-diffusion equations: The proceedings of a symposium year on reaction-diffusion equations. Oxford [England]: Clarendon Press, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lam, King-Yeung, i Yuan Lou. Introduction to Reaction-Diffusion Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20422-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Viehland, Larry A. Gaseous Ion Mobility, Diffusion, and Reaction. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04494-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Smoller, Joel. Shock Waves and Reaction—Diffusion Equations. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0873-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Adamatzky, Andrew. Reaction-Diffusion Automata: Phenomenology, Localisations, Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31078-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Liehr, Andreas W. Dissipative Solitons in Reaction Diffusion Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31251-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hemming, Christopher John. Resonantly forced inhomogeneous reaction-diffusion systems. Ottawa: National Library of Canada, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Reaction-diffusion"

1

Gilding, Brian H., i Robert Kersner. "Reaction-diffusion". W Travelling Waves in Nonlinear Diffusion-Convection Reaction, 43–57. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7964-4_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Adamatzky, Andrew, i Benjamin De Lacy Costello. "Reaction–Diffusion Computing". W Handbook of Natural Computing, 1897–920. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-92910-9_56.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Scherer, Philipp, i Sighart F. Fischer. "Reaction–Diffusion Systems". W Biological and Medical Physics, Biomedical Engineering, 147–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-85610-8_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Deng, Yansha. "Reaction-Diffusion Channels". W Encyclopedia of Wireless Networks, 1179–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mei, Zhen. "Reaction-Diffusion Equations". W Numerical Bifurcation Analysis for Reaction-Diffusion Equations, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04177-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tomé, Tânia, i Mário J. de Oliveira. "Reaction-Diffusion Processes". W Graduate Texts in Physics, 351–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11770-6_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Adamatzky, Andrew, i Benjamin De Lacy Costello. "Reaction-Diffusion Computing". W Encyclopedia of Complexity and Systems Science, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_446-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Deng, Yansha. "Reaction-Diffusion Channels". W Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_216-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Da Prato, Giuseppe. "Reaction-Diffusion Equations". W Kolmogorov Equations for Stochastic PDEs, 99–130. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7909-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Salsa, Sandro, Federico M. G. Vegni, Anna Zaretti i Paolo Zunino. "Reaction-diffusion models". W UNITEXT, 139–88. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Reaction-diffusion"

1

Witkin, Andrew, i Michael Kass. "Reaction-diffusion textures". W the 18th annual conference. New York, New York, USA: ACM Press, 1991. http://dx.doi.org/10.1145/122718.122750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mesquita, D., i M. Walter. "Reaction-diffusion Woodcuts". W 14th International Conference on Computer Graphics Theory and Applications. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007385900890099.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Chao-Nien, Tzyy-Leng Horng, Daniel Lee i Chen-Hsing Tsai. "A NOTE ON REACTION-DIFFUSION SYSTEMS WITH SKEW-GRADIENT STRUCTURE". W The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Nomura, Atsushi, Makoto Ichikawa, Koichi Okada, Hidetoshi Miike, Tatsunari Sakurai i Yoshiki Mizukami. "Anisotropic reaction-diffusion stereo algorithm". W 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2011. http://dx.doi.org/10.1109/isda.2011.6121735.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Timofte, Claudia, Theodore E. Simos, George Psihoyios i Ch Tsitouras. "Upscaling in Reaction-Diffusion Problems". W Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ramos, Juan I. "REACTION-DIFFUSION PHENOMENA WITH RELAXATION". W Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.cht-12.200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Yamada, Yoshio. "GLOBAL SOLUTIONS FOR THE SHIGESADA-KAWASAKI-TERAMOTO MODEL WITH CROSS-DIFFUSION". W The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ackermann, Nils. "LONG-TIME DYNAMICS IN SEMILINEAR PARABOLIC PROBLEMS WITH AUTOCATALYSIS". W The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Du, Yihong. "CHANGE OF ENVIRONMENT IN MODEL ECOSYSTEMS: EFFECT OF A PROTECTION ZONE IN DIFFUSIVE POPULATION MODELS". W The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Farina, Alberto, i Enrico Valdinoci. "THE STATE OF THE ART FOR A CONJECTURE OF DE GIORGI AND RELATED PROBLEMS". W The International Conference on Reaction-Diffusion System and Viscosity Solutions. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812834744_0004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Reaction-diffusion"

1

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), październik 1992. http://dx.doi.org/10.2172/6922826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pope, S. B. Reaction and diffusion in turbulent combustion. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5833755.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rehm, Ronald G., Howard R. Baum i Daniel W. Lozier. Diffusion-controlled reaction in a vortex field. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Barles, G., L. C. Evans i P. E. Souganidis. Wavefront Propagation for Reaction-Diffusion Systems of PDE. Fort Belvoir, VA: Defense Technical Information Center, marzec 1989. http://dx.doi.org/10.21236/ada210862.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), czerwiec 1993. http://dx.doi.org/10.2172/10165611.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hale, Jack K., i Kunimochi Sakamoto. Shadow Systems and Attractors in Reaction-Diffusion Equations,. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1987. http://dx.doi.org/10.21236/ada185804.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rehm, Ronald R., Howard R. Baum, Hai C. Tang i Daniel W. Lozier. Finite-rate diffusion-controlled reaction in a vortex:. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4768.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), październik 1992. http://dx.doi.org/10.2172/10110970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pope, S. B. Reaction and diffusion in turbulent combustion. Progress report. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/10117797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Turk, Greg. Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1990. http://dx.doi.org/10.21236/ada236706.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii