Artykuły w czasopismach na temat „Re-entrant Cavity”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Re-entrant Cavity”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
CALLENAERE, MATHIEU, JEAN-PIERRE FRANC, JEAN-MARIE MICHEL i MICHEL RIONDET. "The cavitation instability induced by the development of a re-entrant jet". Journal of Fluid Mechanics 444 (25.09.2001): 223–56. http://dx.doi.org/10.1017/s0022112001005420.
Pełny tekst źródłaLABERTEAUX, K. R., i S. L. CECCIO. "Partial cavity flows. Part 1. Cavities forming on models without spanwise variation". Journal of Fluid Mechanics 431 (25.03.2001): 1–41. http://dx.doi.org/10.1017/s0022112000002925.
Pełny tekst źródłaTiwari, Ashish Kumar, Ramesh Kumar i P. R. Hannurkar. "Resonant frequency of re-entrant klystron cavity". International Journal of Electronics Letters 4, nr 4 (15.06.2015): 404–10. http://dx.doi.org/10.1080/21681724.2015.1055593.
Pełny tekst źródłaPelz, P. F., T. Keil i T. F. Groß. "The transition from sheet to cloud cavitation". Journal of Fluid Mechanics 817 (22.03.2017): 439–54. http://dx.doi.org/10.1017/jfm.2017.75.
Pełny tekst źródłaDeliceoğlu, Ali, Ebutalib Çelik i Fuat Gürcan. "Singular treatment of viscous flow near the corner by using matched eigenfunctions". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, nr 5 (15.05.2018): 1660–76. http://dx.doi.org/10.1177/0954406218772603.
Pełny tekst źródłaDang, J., i G. Kuiper. "Re-Entrant Jet Modeling of Partial Cavity Flow on Three-Dimensional Hydrofoils". Journal of Fluids Engineering 121, nr 4 (1.12.1999): 781–87. http://dx.doi.org/10.1115/1.2823537.
Pełny tekst źródłaKalhori, Shirzad, Nils Elander, Jan Svennebrink i Sharon Stone-Elander. "A Re-Entrant Cavity for Microwave-Enhanced Chemistry". Journal of Microwave Power and Electromagnetic Energy 38, nr 2 (styczeń 2003): 125–35. http://dx.doi.org/10.1080/08327823.2003.11688493.
Pełny tekst źródłaPandit, Himanshu, Donglu Shi, N. Hari Babu, X. Chaud, D. A. Cardwell, P. He, D. Isfort, Robert Tournier, David Mast i Altan M. Ferendeci. "High Tc superconductor re-entrant cavity filter structures". Physica C: Superconductivity 425, nr 1-2 (wrzesień 2005): 44–51. http://dx.doi.org/10.1016/j.physc.2005.05.010.
Pełny tekst źródłaSangster, A. J., E. McErlean, G. Beale, M. Kelly i P. Smith. "Coupled Re-Entrant Cavity System for Electromagnetic Levitation". Journal of Electromagnetic Waves and Applications 15, nr 6 (styczeń 2001): 815–31. http://dx.doi.org/10.1163/156939301x01048.
Pełny tekst źródłaZang, Jianbo, Hu Zhang, Jiean Shen i Yaoyao Wang. "Analysis of cavity shedding around the twisted hydrofoil". Thermal Science, nr 00 (2022): 180. http://dx.doi.org/10.2298/tsci220606180z.
Pełny tekst źródłaLABERTEAUX, K. R., i S. L. CECCIO. "Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation". Journal of Fluid Mechanics 431 (25.03.2001): 43–63. http://dx.doi.org/10.1017/s0022112000002937.
Pełny tekst źródłaChen, Jie, Chang-Chang Wang, Guoyu Wang i Biao Huang. "Numerical investigation of the cavitating flow structure with special emphasis on the vortex identification method". Modern Physics Letters B 34, nr 04 (31.01.2020): 2050058. http://dx.doi.org/10.1142/s021798492050058x.
Pełny tekst źródłaMohammed, Ali Musa, Yi Wang, Talal Skaik, Sheng Li i Moataz Attallah. "Conductivity measurement using 3D printed re-entrant cavity resonator". Measurement Science and Technology 33, nr 5 (18.02.2022): 055017. http://dx.doi.org/10.1088/1361-6501/ac5134.
Pełny tekst źródłaKawanami, Y., H. Kato, H. Yamaguchi, M. Tanimura i Y. Tagaya. "Mechanism and Control of Cloud Cavitation". Journal of Fluids Engineering 119, nr 4 (1.12.1997): 788–94. http://dx.doi.org/10.1115/1.2819499.
Pełny tekst źródłaHamzah, Hayder, Ali Abduljabar, Jonathan Lees i Adrian Porch. "A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity". Sensors 18, nr 3 (19.03.2018): 910. http://dx.doi.org/10.3390/s18030910.
Pełny tekst źródłaHemawan, Kadek W., Indrek S. Wichman, Tonghun Lee, Timothy A. Grotjohn i Jes Asmussen. "Compact microwave re-entrant cavity applicator for plasma-assisted combustion". Review of Scientific Instruments 80, nr 5 (maj 2009): 053507. http://dx.doi.org/10.1063/1.3131623.
Pełny tekst źródłaKelly, M. B., i A. J. Sangster. "Cylindrical re-entrant cavity resonator design using finite-element simulation". Microwave and Optical Technology Letters 18, nr 2 (5.06.1998): 112–17. http://dx.doi.org/10.1002/(sici)1098-2760(19980605)18:2<112::aid-mop8>3.0.co;2-d.
Pełny tekst źródłaDang, J., i G. Kuiper. "Re-Entrant Jet Modeling of Partial Cavity Flow on Two-Dimensional Hydrofoils". Journal of Fluids Engineering 121, nr 4 (1.12.1999): 773–80. http://dx.doi.org/10.1115/1.2823536.
Pełny tekst źródłaZhang, Desheng, Jian Chen, Lei Shi, Guangjian Zhang, Weidong Shi i van Esch. "Numerical analysis of the unsteady cavitation shedding flow around twisted hydrofoil based on hybrid filter model". Thermal Science 22, nr 4 (2018): 1629–36. http://dx.doi.org/10.2298/tsci1804629z.
Pełny tekst źródłaLi, Jiupeng, Yu Zhang, Yanlin Ke, Tianzeng Hong i Shaozhi Deng. "A Carbon-Nanotube Cold-Cathode Reflex Klystron Oscillator: Fabrication @ X-Band and Returning Electron Beam Realization". Electronics 11, nr 8 (13.04.2022): 1231. http://dx.doi.org/10.3390/electronics11081231.
Pełny tekst źródłaGiunchi, G., A. Figini Albisetti, C. Braggio, G. Carugno, G. Messineo, G. Ruoso, G. Galeazzi i F. Della Valle. "A Re-Entrant ${\hbox{MgB}}_{2}$ Cavity for Dynamic Casimir Experiment". IEEE Transactions on Applied Superconductivity 21, nr 3 (czerwiec 2011): 745–47. http://dx.doi.org/10.1109/tasc.2010.2097575.
Pełny tekst źródłaKartikeyan, M. V., L. M. Joshi, A. K. Sinha, H. N. Bandopadhyay i D. S. Venkateswarlu. "Computer Aided Study of Some Re-entrant Cavity Structures for Klystrons". IETE Journal of Research 39, nr 6 (listopad 1993): 339–44. http://dx.doi.org/10.1080/03772063.1993.11437144.
Pełny tekst źródłaWei, Zhihua, Jie Huang, Jing Li, Junshan Li, Xuyang Liu i Xingsheng Ni. "A Compact Double-Folded Substrate Integrated Waveguide Re-Entrant Cavity for Highly Sensitive Humidity Sensing". Sensors 19, nr 15 (27.07.2019): 3308. http://dx.doi.org/10.3390/s19153308.
Pełny tekst źródłaZhao, Yu, Guoyu Wang i Biao Huang. "Vortex structure analysis of unsteady cloud cavitating flows around a hydrofoil". Modern Physics Letters B 30, nr 02 (20.01.2016): 1550275. http://dx.doi.org/10.1142/s0217984915502759.
Pełny tekst źródłaKumar, Sumit, Sebastian Spence, Simon Perrett, Zaynab Tahir, Angadjit Singh, Chichi Qi, Sara Perez Vizan i Xavier Rojas. "A novel architecture for room temperature microwave optomechanical experiments". Journal of Applied Physics 133, nr 9 (7.03.2023): 094501. http://dx.doi.org/10.1063/5.0136214.
Pełny tekst źródłaXi, W., W. R. Tinga, W. A. G. Voss i B. Q. Tian. "New results for coaxial re-entrant cavity with partially dielectric filled gap". IEEE Transactions on Microwave Theory and Techniques 40, nr 4 (kwiecień 1992): 747–53. http://dx.doi.org/10.1109/22.127525.
Pełny tekst źródłaMenke, T., P. S. Burns, A. P. Higginbotham, N. S. Kampel, R. W. Peterson, K. Cicak, R. W. Simmonds, C. A. Regal i K. W. Lehnert. "Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device". Review of Scientific Instruments 88, nr 9 (wrzesień 2017): 094701. http://dx.doi.org/10.1063/1.5000973.
Pełny tekst źródłaPhadke, N. K., S. H. Bhavnani, A. Goyal, R. C. Jaeger i J. S. Goodling. "Re-entrant cavity surface enhancements for immersion cooling of silicon multichip packages". IEEE Transactions on Components, Hybrids, and Manufacturing Technology 15, nr 5 (1992): 815–22. http://dx.doi.org/10.1109/33.180047.
Pełny tekst źródłaBarroso, J. J., P. J. Castro, O. D. Aguiar i L. A. Carneiro. "Experimental tests on re-entrant klystron cavity for a gravitational wave antenna". Classical and Quantum Gravity 21, nr 5 (13.02.2004): S1221—S1224. http://dx.doi.org/10.1088/0264-9381/21/5/123.
Pełny tekst źródłaBordoni, F., Li Yinghua, B. Spataro, F. Feliciangeli, F. Vasarelli, G. Cardarilli, B. Antonini i R. Scrimaglio. "A microwave scanning surface harmonic microscope using a re-entrant resonant cavity". Measurement Science and Technology 6, nr 8 (1.08.1995): 1208–14. http://dx.doi.org/10.1088/0957-0233/6/8/017.
Pełny tekst źródłaHopkins, Matthew G., Yvonne Leusmann, Markus Richter, Eric F. May i Paul L. Stanwix. "Characterization of Fluid-Phase Behavior Using an Advanced Microwave Re-Entrant Cavity". Journal of Chemical & Engineering Data 65, nr 7 (10.06.2020): 3393–402. http://dx.doi.org/10.1021/acs.jced.0c00213.
Pełny tekst źródłaLinthorne, N. P., i D. G. Blair. "Superconducting re‐entrant cavity transducer for a resonant bar gravitational radiation antenna". Review of Scientific Instruments 63, nr 9 (wrzesień 1992): 4154–60. http://dx.doi.org/10.1063/1.1143227.
Pełny tekst źródłaBarbaca, Luka, Bryce W. Pearce, Harish Ganesh, Steven L. Ceccio i Paul A. Brandner. "On the unsteady behaviour of cavity flow over a two-dimensional wall-mounted fence". Journal of Fluid Mechanics 874 (10.07.2019): 483–525. http://dx.doi.org/10.1017/jfm.2019.455.
Pełny tekst źródłaPark, Sunho, Woochan Seok, Sung Taek Park, Shin Hyung Rhee, Yohan Choe, Chongam Kim, Ji-Hye Kim i Byoung-Kwon Ahn. "Compressibility Effects on Cavity Dynamics behind a Two-Dimensional Wedge". Journal of Marine Science and Engineering 8, nr 1 (13.01.2020): 39. http://dx.doi.org/10.3390/jmse8010039.
Pełny tekst źródłaMohammed, Ali M., Abarasi Hart, Joe Wood, Yi Wang i Michael J. Lancaster. "3D printed re-entrant cavity resonator for complex permittivity measurement of crude oils". Sensors and Actuators A: Physical 317 (styczeń 2021): 112477. http://dx.doi.org/10.1016/j.sna.2020.112477.
Pełny tekst źródłaDular, Matevž, Rudolf Bachert, Christian Schaad i Bernd Stoffel. "Investigation of a re-entrant jet reflection at an inclined cavity closure line". European Journal of Mechanics - B/Fluids 26, nr 5 (wrzesień 2007): 688–705. http://dx.doi.org/10.1016/j.euromechflu.2007.01.001.
Pełny tekst źródłaIga, Yuka, Motohiko Nohmi, Akira Goto, Byeong Rog Shin i Toshiaki Ikohagi. "Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil". Journal of Fluids Engineering 125, nr 4 (1.07.2003): 643–51. http://dx.doi.org/10.1115/1.1596239.
Pełny tekst źródłaWatanabe, Satoshi, Yoshinobu Tsujimoto i Akinori Furukawa. "Theoretical Analysis of Transitional and Partial Cavity Instabilities". Journal of Fluids Engineering 123, nr 3 (30.03.2001): 692–97. http://dx.doi.org/10.1115/1.1378295.
Pełny tekst źródłaSaitoh, Yoshiaki, Jin-ichi Matsuda i Kazuo Kato. "Characteristics of re-entrant type cavity applicator for hyperthermia. I. Experiments for heating possibility." Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 7, nr 1 (1991): 42–52. http://dx.doi.org/10.3191/thermalmedicine.7.42.
Pełny tekst źródłaBalagi, V., i J. P. Singh. "A new design of a re-entrant cavity ionisation chamber for use in brachytherapy". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 578, nr 3 (sierpień 2007): 523–27. http://dx.doi.org/10.1016/j.nima.2007.06.006.
Pełny tekst źródłaEgo, Hiroyasu. "HOM-damped re-entrant quasi-half-cell cavity for the SPring-8 storage ring". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 516, nr 2-3 (styczeń 2004): 270–80. http://dx.doi.org/10.1016/j.nima.2003.07.060.
Pełny tekst źródłaJI, BIN, XIANWU LUO, YULIN WU, XIAOXING PENG i HONGYUAN XU. "NUMERICAL AND EXPERIMENTAL STUDY ON UNSTEADY SHEDDING OF PARTIAL CAVITATION". Modern Physics Letters B 24, nr 13 (30.05.2010): 1441–44. http://dx.doi.org/10.1142/s0217984910023827.
Pełny tekst źródłaHarwood, Casey M., Yin L. Young i Steven L. Ceccio. "Ventilated cavities on a surface-piercing hydrofoil at moderate Froude numbers: cavity formation, elimination and stability". Journal of Fluid Mechanics 800 (29.06.2016): 5–56. http://dx.doi.org/10.1017/jfm.2016.373.
Pełny tekst źródłaZhang, De-Sheng, Guan-Gjian Zhang, Hai-Yu Wang i Wei-Dong Shi. "Numerical investigation of time-dependent cloud cavitating flow around a hydrofoil". Thermal Science 20, nr 3 (2016): 913–20. http://dx.doi.org/10.2298/tsci1603913z.
Pełny tekst źródłaMATSUDA, Jin-ichi, Kazuo KATO i Yoshiaki SAITOH. "The Application of a Re-entrant Type Resonant Cavity Applicator to Deep and Concentrated Hyperthermia". Thermal Medicine(Japanese Journal of Hyperthermic Oncology) 4, nr 2 (1988): 111–18. http://dx.doi.org/10.3191/thermalmedicine.4.111.
Pełny tekst źródłaNAGASAWA, Junichi, Jiro ARAKAWA, YUYA Iseki, Yasuhiro SHINDO i Kazuo KATO. "2D44 Heating properties of re-entrant type resonant cavity applicator using simple blood vessel model". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2014.26 (2014): 427–28. http://dx.doi.org/10.1299/jsmebio.2014.26.427.
Pełny tekst źródłaBansiwal, Ashok, Sushil Raina, K. J. Vinoy i Subrata Kumar Datta. "A simple method for estimating the quality factor of cylindrical re-entrant cavity of Klystrons". Journal of Electromagnetic Waves and Applications 33, nr 8 (18.03.2019): 1082–91. http://dx.doi.org/10.1080/09205071.2019.1592710.
Pełny tekst źródłaNakayama, Shigeru. "Microwave Sensor of Basis Weight and Moisture Content of Sheet Materials by Re-Entrant Cavity". Japanese Journal of Applied Physics 26, Part 1, No. 11 (20.11.1987): 1935–36. http://dx.doi.org/10.1143/jjap.26.1935.
Pełny tekst źródłaTSAI, T. M., i MICHAEL J. MIKSIS. "The effects of surfactant on the dynamics of bubble snap-off". Journal of Fluid Mechanics 337 (25.04.1997): 381–410. http://dx.doi.org/10.1017/s0022112097004898.
Pełny tekst źródłaWei, Zhihua, Jie Huang, Jing Li, Guoqing Xu, Zongde Ju, Xuyang Liu i Xingsheng Ni. "A High-Sensitivity Microfluidic Sensor Based on a Substrate Integrated Waveguide Re-Entrant Cavity for Complex Permittivity Measurement of Liquids". Sensors 18, nr 11 (16.11.2018): 4005. http://dx.doi.org/10.3390/s18114005.
Pełny tekst źródła