Gotowa bibliografia na temat „RCC FRAME STRUCTURE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „RCC FRAME STRUCTURE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "RCC FRAME STRUCTURE"
Amrapali Kasabe i Vaibhav Shelar. "Pushover analysis of building using soft story at different levels". World Journal of Advanced Engineering Technology and Sciences 9, nr 1 (30.06.2023): 203–10. http://dx.doi.org/10.30574/wjaets.2023.9.1.0160.
Pełny tekst źródłaBore, Miss Sapana, i Prof R. M. Desai. "Wind Analysis of RCC Tube in Tube Structure". International Journal for Research in Applied Science and Engineering Technology 10, nr 11 (30.11.2022): 1691–701. http://dx.doi.org/10.22214/ijraset.2022.47703.
Pełny tekst źródłaVerma, Pankaj Kumar. "Comparative Study Seismic Analysis of RCC, Steel & Steel-Concrete Composite Frame: A Review". International Journal for Research in Applied Science and Engineering Technology 9, nr 8 (31.08.2021): 2369–72. http://dx.doi.org/10.22214/ijraset.2021.37665.
Pełny tekst źródłaKuddus, Mir Abdul, i Partha Pritom Dey. "Cost Analysis of RCC, Steel and Composite Multi-Storied Car Parking Subjected to High Wind Exposure in Bangladesh". Civil Engineering Journal 3, nr 2 (28.02.2017): 95–104. http://dx.doi.org/10.28991/cej-2017-00000076.
Pełny tekst źródłaLaddha, Vrunda R., Sharda P. Siddh i Prashant D. Hiwas. "Analytical Investigation of Composite Structure in Comparison of RCC Structure". IOP Conference Series: Materials Science and Engineering 1197, nr 1 (1.11.2021): 012069. http://dx.doi.org/10.1088/1757-899x/1197/1/012069.
Pełny tekst źródłaShrirame, Sharad, Prof Sanjay Dhenge i Prof Girish Sawai. "Comparative Analysis of Lateral Loads Resisting System for RCC Structure". International Journal for Research in Applied Science and Engineering Technology 10, nr 5 (31.05.2022): 2267–73. http://dx.doi.org/10.22214/ijraset.2022.42719.
Pełny tekst źródłaWadde, Abhishek, i Dr Uttam Awari. "Wind Analysis of RCC Tube in Tube Structure Using ETABS Software". International Journal for Research in Applied Science and Engineering Technology 10, nr 12 (31.12.2022): 2322–32. http://dx.doi.org/10.22214/ijraset.2022.48468.
Pełny tekst źródłaKasat, Pankaj. "Analysis of RCC Frame Structure with Change in Location of Floating Columns". International Journal for Research in Applied Science and Engineering Technology 10, nr 9 (30.09.2022): 475–79. http://dx.doi.org/10.22214/ijraset.2022.46656.
Pełny tekst źródłaRaju, Y. Kamala, G. V. V. Satyanarayana i G. Arun Sai. "RCC Highrised Residential Buildings its Influence on Earthquake Loads". E3S Web of Conferences 184 (2020): 01107. http://dx.doi.org/10.1051/e3sconf/202018401107.
Pełny tekst źródłaMaharjan, Rajib, i Vivek Shrestha. "Analysis of One Bay Residential Building with Combined RCC Frame and Load Bearing Wall Structures". Journal of the Institute of Engineering 13, nr 1 (22.06.2018): 117–24. http://dx.doi.org/10.3126/jie.v13i1.20356.
Pełny tekst źródłaRozprawy doktorskie na temat "RCC FRAME STRUCTURE"
Ronchini, Michele. "A comparative analysis of seismic design strategies for R.C. frame structures". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8549/.
Pełny tekst źródłaNicoletti, Vanni. "Experimental Evaluation of Infill Masonry Walls Stiffness for the Modelling of Non-Structural Components in R.C. Frame Buildings". Doctoral thesis, Università Politecnica delle Marche, 2018. http://hdl.handle.net/11566/253124.
Pełny tekst źródłaInfill walls are commonly disregarded in the modelling of reinforced concrete (r.c.) frame structures and only their contribution in terms of mass is taken into account assuming that resistance and stiffness do not affect the structural response. This practice is supported by the fact that (i) at ultimate limit state infill walls are usually considered to be completely damaged, so that their contribution is negligible in terms of stiffness, while (ii) at the damage limitation limit state the value of the interstorey drift, obtained by neglecting the infill walls stiffness contribution, is commonly considered to be conservative. However, for strategic buildings, such as schools, hospitals, police and fire stations, it is crucial to preserve the infill walls from any damage, even for severe earthquake, in order to guarantee the building occupancy during the emergency management. Furthermore, these buildings are sometimes seismically protected with system and devices (dampers, isolators, etc…) whose design requires the real dynamic behaviour of the structure (in terms of frequencies and/or displacements and/or velocities) to be considered. To this purpose, it becomes crucial to accurately model the entire structure, including infill walls, and to validate this model on the basis of experimental evidences. The wall typology and the construction procedures are source of uncertainties in modelling interactions between structural and non-structural components. Thus, an experimental evaluation of the stiffness properties of the wall infill panel could be very useful to assess the stiffening contribution added by the infill masonry walls to the concrete frame in the structural model adopted for the design. In this thesis is presented a procedure for developing accurate global finite element (f.e.) models of infilled r.c. frame buildings based on results of experimental an operational modal analysis of non-structural components and of the whole buildings. In particular, impact load tests with an instrumented hammer are performed on homogeneous wall panels to identify the modal parameters (frequency and mode shapes) and to estimate the mechanical properties of the masonry walls. Afterwards, the infill walls are included in the f.e. structural model, whose modal parameters are compared with those derived with operational modal analysis based on ambient vibration measurements. Furthermore, an experimental campaign on three specimens of infill masonry walls built in the Laboratory of Materials and Structures of the Faculty of Engineering at the Università Politecnica delle Marche is conducted. These specimens are built with the target to reproduce the features of some of the in situ investigated infill walls and are tested both dynamically and statically. First of all, impact load tests with an instrumented hammer are performed to investigate the out of plane dynamic behaviour of these walls; then, lateral load tests are carried out to investigate the in plane static behaviour of the panel under low level of lateral forces. The experimental results obtained are used to calibrate f.e. models of the specimens with the aim to evaluate the reliability of the masonry mechanical properties estimated through different approaches.
SPERANZA, ELISA. "The Importance of Calibration and Modelling Non-Structural Elements in the Evaluation of Seismic Vulnerability Index of Strategic Buildings Before and After Retrofitting". Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274486.
Pełny tekst źródłaThis thesis aims to investigate on the modelling of the non-structural elements related to internal and external infill walls, trying to quantify the difference induced by different modelling strategies on the value of the seismic vulnerability index with reference to strategic buildings. On this purpose, two case studies are analysed: the Benedetto Croce high school in Avezzano and the Varano high school in Camerino, r.c. frame buildings retrofitted with external steel towers equipped with viscous dampers at the basis. For both case studies, three models are implemented, before and after the retrofitting, which are characterized by an increasing level of detail: model A with only structural components, model B with external infill panels modelled as equivalent connecting struts according to literature, and model C with external and internal infill walls calibrated through the results of in-situ dynamic tests. As regards the pre-retrofitting phase, the calculation of the seismic vulnerability index was carried out by means of nonlinear static analysis (pushover). As for the post-retrofitting phase, the calculation of the seismic vulnerability index was carried out by means of non-linear dynamic analysis (I.D.A). The results are shown in terms of comparison between the capacity curves obtained with push over analyses (pre-retrofitting) and with incremental dynamic analyses for the different model. In addition, the outcomes are shown also in terms of intensity level of the seismic action necessary to reach a predetermined limit state for model A, model B and model C.
AHMAD, KUNWAR KHALIQE. "EVALUTING THE PERFORMANCE LEVEL OF RCC FRAME STRUCTURE BY PERFORMANCE BASED ANALYSIS USING SAP 2000". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15517.
Pełny tekst źródłaGao, Jin-Sheng, i 高金盛. "Behavior of Fire Damaged R.C. Frame Structures". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/59389383442620486758.
Pełny tekst źródłaJOSHI, KIRTI CHANDRA. "SEISMIC RESPONSE OF MULTI-STOREY SHEAR WALL FRAMED STRUCTURE WITH SOFT STORY". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19325.
Pełny tekst źródłaMENGISTIE, BERHANU MELKAMU. "ASSESSMENT OF R.C. FRAMED BUILDINGS WITH SOIL STRUCTURE INTERACTION: AS PER ETHIOPIAN AND INDIAN SEISMIC CODE". Thesis, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18029.
Pełny tekst źródłaCzęści książek na temat "RCC FRAME STRUCTURE"
Sneha, S. D., H. Hema i R. Abishek. "A Comparative Study on RCC Structures (Frame, Infill, Bracings, Wire Frame and Shear Wall)". W Lecture Notes in Civil Engineering, 99–114. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3317-0_9.
Pełny tekst źródłaPhilip, Pinky Merin, C. K. Madheswaran i Eapen Skaria. "Retrofitting of Seismically Damaged Open Ground Storey RCC Framed Building with Geopolymer Concrete". W Advances in Structural Engineering, 463–81. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2190-6_39.
Pełny tekst źródłaElmasry, Mohamed I. S., Melad Belal Said i Essam A. Elkordy. "Retrofitting Gravity Load Designed R.C Frames Using FRP". W Advances and Challenges in Structural Engineering, 1–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01932-7_1.
Pełny tekst źródłaGurujee, C. S., i S. N. Agashe. "Optimal Design of R.C. Frames Based on Improved Inelastic Analysis Method". W Structural Optimization, 101–8. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_14.
Pełny tekst źródłaKumari, Sapna, Ashish Singh i Sasankasekhar Mandal. "Effect of Terrain Category, Aspect Ratio and Number of Storeys on the Shear Lag Phenomenon in RCC Framed Tube Structures". W Structural Integrity, 163–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04793-0_12.
Pełny tekst źródłaBarbagallo, Francesca, Melina Bosco, Edoardo M. Marino, Pier Paolo Rossi i Paola R. Stramondo. "Seismic Upgrading of Vertically Irregular Existing r.c. Frames by BRBs". W Seismic Behaviour and Design of Irregular and Complex Civil Structures II, 181–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14246-3_16.
Pełny tekst źródłaJain, Monika, i S. S. Sanghai. "Seismic Response Control of Unsymmetrical RCC Framed Building Using Base Isolation Considering Soil Structure Interaction". W ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management, 170–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8507-0_26.
Pełny tekst źródła"4. Global structural behaviour of bare frames". W RC FRAMES UNDER EARTHQUAKE LOADING, 169–230. Thomas Telford Publishing, 1996. http://dx.doi.org/10.1680/rcfuel.35478.0004.
Pełny tekst źródłaBergami, A., C. Nuti i T. Albanesi. "Displacement based design of BRB for the seismic protection of R.C. frames". W Tailor Made Concrete Structures, 249. CRC Press, 2008. http://dx.doi.org/10.1201/9781439828410.ch203.
Pełny tekst źródła"20. ASSESSING THE SEISMIC PERFORMANCE OF A R.C. FRAME STRUCTURE BY NUMERICAL SIMULATIONS – AN EFFICIENT TOOL FOR A SUSTAINABLE FUTURE". W Proceedings Of International Conference Building Services And Energy Efficiency, 231–40. Sciendo, 2020. http://dx.doi.org/10.2478/9788395720413-020.
Pełny tekst źródłaStreszczenia konferencji na temat "RCC FRAME STRUCTURE"
Kumar Jha, Ankit, Satyam Mandloi, Ayush Rai i Rajesh Kumar. "Comparative Study of Indian Codes with Approximate Methods in Analysis and Design of Multi-Storey RCC Frame Structure". W Annual International Conference on Architecture and Civil Engineering (ACE 2014). Global Science and Technology Forum, 2014. http://dx.doi.org/10.5176/2301-394x_ace14.117.
Pełny tekst źródłaLiu, Yin, Hai Xie, Zichen Kong, Xuejiao Shao, Stephan Courtin, Sam Cuvilliez i Furui Xiong. "Fatigue Benchmark Comparison Effort Between Code_Aster and CNNC/NPIC Software – Part 3". W ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-78364.
Pełny tekst źródłaTon-That, Marc, Christine Vauglin i Gilbert Trillon. "Main Evolutions of the RCC-C Design and Construction Code for Fuel Assemblies Since 2015". W 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81436.
Pełny tekst źródłaMarakhwar, Sourabh, i Nishant Bhatia. "Design of Large RCC Water Tank Using Framed Structure". W Computer Science, Communication and Instrumentation Devices. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-5247-1_013.
Pełny tekst źródłaLe, Minh, Olivier Asserin, Laurent Forest, Olivier Fandeur i Philippe Pilvin. "Numerical Simulation of Hot Cracking Tests". W ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-98170.
Pełny tekst źródłaMorshed, Syed Ahnaf, Istiakur Rahman i Md Jahidul Islam. "A Numerical Study of Vertical Discontinuity of RCC Frame Structures by Finite Element Analysis". W Annual International Conference on Architecture and Civil Engineering (ACE 2016). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2301-394x_ace16.90.
Pełny tekst źródłaShanker, Rama, Suresh Bhalla i Ashok Gupta. "An Integrated Approach for Health Monitoring of Multistorey R.C. Frame Structures". W ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-382.
Pełny tekst źródłaDu, Yuan-Fang, i She-Liang Wang. "Shaking Table Test of High Performance RAC Frame Structure under Rare Earthquake". W 3rd International Conference on Mechatronics, Robotics and Automation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmra-15.2015.17.
Pełny tekst źródłaAnania, L., i G. D’Agata. "Innovative technologies in the upgrading of existing r.c. framed structures". W ERES 2015. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/eres150131.
Pełny tekst źródłaXiao-hong, Bai, i Jiao Yu-feng. "Analysis of Multi-Dimensional Elastic-Plastic Seismic Response of R.C. Frame-Bent Structure". W 2010 Third International Conference on Information and Computing Science (ICIC). IEEE, 2010. http://dx.doi.org/10.1109/icic.2010.321.
Pełny tekst źródłaRaporty organizacyjne na temat "RCC FRAME STRUCTURE"
MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.314.
Pełny tekst źródłaLOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.286.
Pełny tekst źródła