Gotowa bibliografia na temat „Rayleigh analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Rayleigh analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Rayleigh analysis"
Hubral, P., i M. Tygel. "Analysis of the Rayleigh pulse". GEOPHYSICS 54, nr 5 (maj 1989): 654–58. http://dx.doi.org/10.1190/1.1442692.
Pełny tekst źródłaCardoso, Fernando, Partially supported by CNP, q. sub, esub Brazil, Fernando Cardoso, Partially supported by CNP, q. sub i esub Brazil. "Rayleigh Quasimodes In Linear Elasticity". Communications in Partial Differential Equations 17, nr 7 (1992): 87–100. http://dx.doi.org/10.1080/03605309208820888.
Pełny tekst źródłaGupta, J. R., i M. B. Kaushal. "Generalized hydromagnetic Rayleigh-Taylor instability". Journal of Mathematical Analysis and Applications 134, nr 1 (sierpień 1988): 51–63. http://dx.doi.org/10.1016/0022-247x(88)90006-6.
Pełny tekst źródłaQingling, Du, Liu Zhengping i Liu Shijie. "Analysis of Influencing Factors and Numerical Simulation of Horizontal-to-Vertical Spectral Ratio Method". Journal of Earthquake and Tsunami 14, nr 01 (18.09.2019): 2050004. http://dx.doi.org/10.1142/s1793431120500049.
Pełny tekst źródłaBosner, Nela, i Zlatko Drmač. "Subspace Gap Residuals for Rayleigh–Ritz Approximations". SIAM Journal on Matrix Analysis and Applications 31, nr 1 (styczeń 2009): 54–67. http://dx.doi.org/10.1137/070689425.
Pełny tekst źródłaTang, Ping Tak Peter. "Dynamic Condition Estimation and Rayleigh–Ritz Approximation". SIAM Journal on Matrix Analysis and Applications 15, nr 1 (styczeń 1994): 331–46. http://dx.doi.org/10.1137/s0895479892226603.
Pełny tekst źródłaBatterson, Steve, i John Smillie. "The Dynamics of Rayleigh Quotient Iteration". SIAM Journal on Numerical Analysis 26, nr 3 (czerwiec 1989): 624–36. http://dx.doi.org/10.1137/0726037.
Pełny tekst źródłaKaminski, Allison, i James McDaniel. "Analysis of modified structures by Rayleigh quotient". Journal of the Acoustical Society of America 150, nr 4 (październik 2021): A344. http://dx.doi.org/10.1121/10.0008528.
Pełny tekst źródłaJimenez, Javier, i Juan A. Zufiria. "A boundary-layer analysis of Rayleigh-Bénard convection at large Rayleigh number". Journal of Fluid Mechanics 178 (maj 1987): 53–71. http://dx.doi.org/10.1017/s0022112087001113.
Pełny tekst źródłaFASANA, A., i S. MARCHESIELLO. "RAYLEIGH-RITZ ANALYSIS OF SANDWICH BEAMS". Journal of Sound and Vibration 241, nr 4 (kwiecień 2001): 643–52. http://dx.doi.org/10.1006/jsvi.2000.3311.
Pełny tekst źródłaRozprawy doktorskie na temat "Rayleigh analysis"
Swisher, Nora. "Data Analysis of Rayleigh-Taylor Unstable Flows". Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/988.
Pełny tekst źródłaRao, Chaitanya Kumar Hassibi Babak Hassibi Babak. "Asymptotic analysis of wireless systems with Rayleigh fading /". Diss., Pasadena, Calif. : Caltech, 2007. http://resolver.caltech.edu/CaltechETD:etd-04252007-122857.
Pełny tekst źródłaBashir, Hussam. "Calculation of Wave Propagation for Statistical Energy Analysis Models". Thesis, Uppsala universitet, Tillämpad mekanik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267928.
Pełny tekst źródłaMckay, Mark. "Finite element analysis of isotropic and anisotropic loaded ridge waveguide". Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/618.
Pełny tekst źródłaFan, Yichao. "The analysis of surface defects using the ultrasonic Rayleigh surface wave". Thesis, University of Warwick, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495017.
Pełny tekst źródłaYildirim, Cihan. "Numerical Study Of Rayleigh Benard Thermal Convection Via Solenoidal Bases". Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613128/index.pdf.
Pełny tekst źródłaenard problem of thermal convection between rigid plates heated from below under the influence of gravity with and without rotation is presented. The first numerical approach uses spectral element method with Fourier expansion for horizontal extent and Legendre polynomal for vertical extent for the purpose of generating a database for the subsequent analysis by using Karhunen-Lo'
eve (KL) decomposition. KL decompositions is a statistical tool to decompose the dynamics underlying a database representing a physical phenomena to its basic components in the form of an orthogonal KL basis. The KL basis satisfies all the spatial constraints such as the boundary conditions and the solenoidal (divergence-free) character of the underlying flow field as much as carried by the flow database. The optimally representative character of the orthogonal basis is used to investigate the convective flow for different parameters, such as Rayleigh and Prandtl numbers. The second numerical approach uses divergence free basis functions that by construction satisfy the continuity equation and the boundary conditions in an expansion of the velocity flow field. The expansion bases for the thermal field are constructed to satisfy the boundary conditions. Both bases are based on the Legendre polynomials in the vertical direction in order to simplify the Galerkin projection procedure, while Fourier representation is used in the horizontal directions due to the horizontal extent of the computational domain taken as periodic. Dual bases are employed to reduce the governing Boussinesq equations to a dynamical system for the time dependent expansion coefficients. The dual bases are selected so that the pressure term is eliminated in the projection procedure. The resulting dynamical system is used to study the transitional regimes numerically. The main difference between the two approaches is the accuracy with which the solenoidal character of the flow is satisfied. The first approach needs a numerically or experimentally generated database for the generation of the divergence-free KL basis. The degree of the accuracy for the KL basis in satisfying the solenoidal character of the flow is limited to that of the database and in turn to the numerical technique used. This is a major challenge in most numerical simulation techniques for incompressible flow in literature. It is also dependent on the parameter values at which the underlying flow field is generated. However the second approach is parameter independent and it is based on analytically solenoidal basis that produces an almost exactly divergence-free flow field. This level of accuracy is especially important for the transition studies that explores the regions sensitive to parameter and flow perturbations.
Orozco, M. Catalina (Maria Catalina). "Inversion Method for Spectral Analysis of Surface Waves (SASW)". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5124.
Pełny tekst źródłaThiele, Sebastian. "Air-coupled detection of Rayleigh surface waves to assess material nonlinearity due to precipitation in alloy steel". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50276.
Pełny tekst źródłaSeet, Siong Leng Henry. "Analysis of noncoherent orthogonal modulation for mobile computing". Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/55206.
Pełny tekst źródłaWireless communication is employed to connect mobile computers in a networked environment for information exchange. In a tactical space, sensors and computers typically need to operate on-the-move while transmitting data over both short and long distances in different terrain and conditions. The wireless communication is thus susceptible to effects of Doppler shift and channel fading. In addition, when security and anti jamming features are required, such as frequency-hopping techniques, then coherent signal detection is difficult and noncoherent modulation is used instead. Our study will focus on the bit error rate (BER) performance analysis of noncoherent orthogonal modulation, specifically M-ary frequency-shift keying (MFSK) and code-shift keying (CSK) modulation, in both additive white Gaussian noise (AWGN) and for a Rayleigh fading channel with Doppler shift. The potential applications include communications between mobile computer-sensor devices, such as a mobile ground control station maintaining a datalink with UAV.
Civilian
Shao, Xiaofei. "A receiver structure for frequency-flat time-varying rayleigh channels and performance analysis". Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121487.
Pełny tekst źródłaDans la présente thèse, nous proposons une structure de récepteur pour des canaux de Rayleigh à variation temporelle et à réponse uniforme en fréquences, comprenant deux parties : un étage d'entrée du récepteur et un détecteur a posteriori maximum (MAP, pour Maximum A-Posteriori). La discrétisation du signal reçu et continu dans le temps représente une étape essentielle de l'étage d'entrée et pour une telle application, nous présentons un nouveau cadre pour la représentation discrète des signaux continus dans le temps. L'un des aspects clés de ce cadre est la représentation de la fonction d'autocorrélation de l'évanouissement sous la forme d'un noyau séparable dimensionnel fini. On utilise l'algorithme de la transformée de Haar rapide (FHT, pour Fast Haar Transform) à l'étage d'entrée dans le but d'atténuer la complexité. Une analyse de notre structure de récepteur pour canaux à évanouissement graduel révèle que cette structure convient de façon optimale à certains schémas de modulation. Les résultats de rendement, simulés par ordinateur et à l'aide de la méthode de Monte-Carlo, sont présentés pour trois schémas de modulation binaire appliqués à des canaux à évanouissement de Rayleigh à variation temporelle. Une comparaison avec la littérature scientifique démontre que notre récepteur peut offrir un rendement optimum dans le cas de la modulation orthogonale temporelle. En ce qui concerne la modulation à déplacement minimum (MSK, pour Minimum Shift Keying), notre récepteur, qui fait appel à quatre fonctions de base, est en mesure d'abaisser le plancher d'erreur d'un ordre de grandeur pour ce qui est des techniques signalées présentant une complexité similaire. La modulation par déplacement de fréquence orthogonale (FSK, pour Frequency Shift Keying) peut offrir le même rendement que la modulation orthogonale temporelle dans le casdes canaux à évanouissement graduel, mais son rendement est médiocre avec des canaux à évanouissement rapide, en plus de subir les répercussions d'un plancher d'erreur. Par contre, comparativement à la modulation à déplacement minimum, la modulation par déplacement de fréquence orthogonale procure un rendement supérieur.
Książki na temat "Rayleigh analysis"
Ilanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. The Rayleigh-Ritz Method for Structural Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.
Pełny tekst źródłaEidson, T. M. Filtering analysis of a direct numerical simulation of the turbulent Rayleigh-Benard problem. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Znajdź pełny tekst źródłaShore, Charles P. Reduction method for thermal analysis of complex aerospace structures. Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Znajdź pełny tekst źródłaShirinzadeh, B. Study of cluster formation and its effects on Rayleigh and Raman scattering measurements in a Mach 6 wind tunnel. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.
Znajdź pełny tekst źródłaDan bai nong du guang dian ce shi ji shu. Beijing: Beijing li gong da xue chu ban she, 2014.
Znajdź pełny tekst źródłaConka, Tahir. Performance analysis of noncoherent differential phase shift keying using Post-Detection Selection Combining over a Rayleigh fading channel. Monterey, Calif: Naval Postgraduate School, 1998.
Znajdź pełny tekst źródłaGraglia, Roberto D., Giuseppe Pelosi i Stefano Selleri, red. International Workshop on Finite Elements for Microwave Engineering. Florence: Firenze University Press, 2016. http://dx.doi.org/10.36253/978-88-6655-968-9.
Pełny tekst źródłaPattern formation in viscous flows: The Taylor-Couette problem and Rayleigh-Benard convection. Basel: Birkhäuser, 1999.
Znajdź pełny tekst źródłaPattern formation in viscous flows: The Taylor-Couette problem and Rayleigh-Bénard convection. Basel: Birkhäuser, 1999.
Znajdź pełny tekst źródłaMochida, Yusuke, Luis Monterrubio i Sinniah Ilanko. Rayleigh-Ritz Method for Structural Analysis. Wiley & Sons, Incorporated, John, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Rayleigh analysis"
Kaptsov, A. V., i S. V. Kuznetsov. "Eigensolutions for Rayleigh Wave Analysis". W IUTAM Symposium on Diffraction and Scattering in Fluid Mechanics and Elasticity, 329–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0087-0_36.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "The Rayleigh-Ritz Method and Simple Applications". W The Rayleigh-Ritz Method for Structural Analysis, 21–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch3.
Pełny tekst źródłaChing, Emily S. C. "Statistical Analysis of Turbulent Fluctuations". W Statistics and Scaling in Turbulent Rayleigh-Bénard Convection, 9–35. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4560-23-8_2.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Principle of Conservation of Energy and Rayleigh's Principle". W The Rayleigh-Ritz Method for Structural Analysis, 1–9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch1.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Natural Frequencies and Modes of Plates of Rectangular Planform". W The Rayleigh-Ritz Method for Structural Analysis, 113–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch10.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Natural Frequencies and Modes of Shallow Shells of Rectangular Planform". W The Rayleigh-Ritz Method for Structural Analysis, 133–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch11.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Natural Frequencies and Modes of Three-Dimensional Bodies". W The Rayleigh-Ritz Method for Structural Analysis, 149–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch12.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Vibration of Axially Loaded Beams and Geometric Stiffness". W The Rayleigh-Ritz Method for Structural Analysis, 161–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch13.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "The RRM in Finite Elements Method". W The Rayleigh-Ritz Method for Structural Analysis, 181–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch14.
Pełny tekst źródłaIlanko, Sinniah, Luis E. Monterrubio i Yusuke Mochida. "Rayleigh's Principle and Its Implications". W The Rayleigh-Ritz Method for Structural Analysis, 11–19. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984444.ch2.
Pełny tekst źródłaStreszczenia konferencji na temat "Rayleigh analysis"
Jiang, Naibo, Paul S. Hsu, Daniel Loriorla, Paul M. Danehy i Sukesh Roy. "10-kHz rate tomographic Rayleigh scattering imaging". W Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/lacsea.2020.ltu4c.3.
Pełny tekst źródłaPugsley, Deborah Nassif, i Lutz Hüwel. "Rayleigh and Raman Diagnostic of Laser Generated Plasmas". W Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwd.13.
Pełny tekst źródłaBaranec, Christoph J., Michael Lloyd-Hart, N. Mark Milton, Thomas Stalcup, Miguel Snyder, Nicole Putnam i Roger Angel. "Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons". W Adaptive Optics: Methods, Analysis and Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/aopt.2005.atha3.
Pełny tekst źródłaStřelec, Luboš, i Milan Stehlík. "On simulation of exact tests in Rayleigh and normal families". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756162.
Pełny tekst źródłaLainscsek, Claudia S. M., i Ferdinand Schürrer. "Spatio-temporal analysis of Rayleigh-Bénard convection". W Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51049.
Pełny tekst źródłaPeng, Shia-Hui, Lars Davidson i Kemo Hanjalic. "NUMERICAL ANALYSIS OF RAYLEIGH-BERNARD CONVECTION USING LARGE EDDY SIMULATION AT HIGH RAYLEIGH NUMBERS". W Fourth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2005. http://dx.doi.org/10.1615/tsfp4.1630.
Pełny tekst źródłaT, Vishnu V., i Arnab Kumar De. "ANALYSIS OF PERIODIC RAYLEIGH BÉNARD CONVECTION WITH MODERATE ROTATION RATES AT LOW RAYLEIGH NUMBERS". W Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihmtc-2017.110.
Pełny tekst źródłaCharney, Finley A. "Unintended Consequences of Modeling Damping in Structures: Rayleigh Damping". W 17th Analysis and Computation Specialty Conferenc at Structures 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40878(202)12.
Pełny tekst źródłaKurek, Igor, Pierre Lecomte, Thomas Castelain, Emmanuel Jondeau i Christophe Bailly. "Interferometric Rayleigh Scattering for flow analysis : Fabry-Pérot interferogram analysis". W 28th AIAA/CEAS Aeroacoustics 2022 Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-2957.
Pełny tekst źródłaAndreozzi, Assunta, Bernardo Buonomo i Oronzio Manca. "Parametric Analysis for Thermal and Fluid Dynamic Management of Natural Convection in a Channel-Chimney System". W ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95585.
Pełny tekst źródłaRaporty organizacyjne na temat "Rayleigh analysis"
Meiron, D. I., i P. G. Saffman. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability. Office of Scientific and Technical Information (OSTI), wrzesień 1987. http://dx.doi.org/10.2172/5585523.
Pełny tekst źródłaKamath, C., A. Gezahegne i P. Miller. Analysis of Rayleigh-Taylor Instability Part I: Bubble and Spike Count. Office of Scientific and Technical Information (OSTI), sierpień 2006. http://dx.doi.org/10.2172/900052.
Pełny tekst źródłaKamath, C., A. Gezahegne i P. Miller. Analysis of Rayleigh-Taylor Instability: Statistics on Rising Bubbles and Falling Spikes. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/923126.
Pełny tekst źródłaKamath, C., A. Gezahegne i P. Miller. Analysis of Rayleigh-Taylor Instability: Statistics on Rising Bubbles and Falling Spikes. Office of Scientific and Technical Information (OSTI), grudzień 2007. http://dx.doi.org/10.2172/924000.
Pełny tekst źródłaHerbert, John M. Symbolic derivation of high-order Rayleigh-Schroedinger perturbation energies using computer algebra: Application to vibrational-rotational analysis of diatomic molecules. Office of Scientific and Technical Information (OSTI), styczeń 1997. http://dx.doi.org/10.2172/491448.
Pełny tekst źródłaHussey, T. W., i S. S. Payne. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode. Office of Scientific and Technical Information (OSTI), kwiecień 1987. http://dx.doi.org/10.2172/6488379.
Pełny tekst źródła