Artykuły w czasopismach na temat „Rational Strain, Metabolic Engineering”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Rational Strain, Metabolic Engineering”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tsouka, Sophia, Meric Ataman, Tuure Hameri, Ljubisa Miskovic i Vassily Hatzimanikatis. "Constraint-based metabolic control analysis for rational strain engineering". Metabolic Engineering 66 (lipiec 2021): 191–203. http://dx.doi.org/10.1016/j.ymben.2021.03.003.
Pełny tekst źródłaFreedman, Benjamin G., Parker W. Lee i Ryan S. Senger. "Engineering the Metabolic Profile of Clostridium cellulolyticum with Genomic DNA Libraries". Fermentation 9, nr 7 (27.06.2023): 605. http://dx.doi.org/10.3390/fermentation9070605.
Pełny tekst źródłaBurgardt, Arthur, Ludovic Pelosi, Mahmoud Hajj Chehade, Volker F. Wendisch i Fabien Pierrel. "Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production". Metabolites 12, nr 5 (11.05.2022): 428. http://dx.doi.org/10.3390/metabo12050428.
Pełny tekst źródłaZhu, Linghuan, Sha Xu, Youran Li i Guiyang Shi. "Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering". PLOS ONE 16, nr 10 (19.10.2021): e0258180. http://dx.doi.org/10.1371/journal.pone.0258180.
Pełny tekst źródłaNevoigt, Elke. "Progress in Metabolic Engineering of Saccharomyces cerevisiae". Microbiology and Molecular Biology Reviews 72, nr 3 (wrzesień 2008): 379–412. http://dx.doi.org/10.1128/mmbr.00025-07.
Pełny tekst źródłaNatarajan, Aravind, Thapakorn Jaroentomeechai, Mingji Li, Cameron J. Glasscock i Matthew P. DeLisa. "Metabolic engineering of glycoprotein biosynthesis in bacteria". Emerging Topics in Life Sciences 2, nr 3 (30.08.2018): 419–32. http://dx.doi.org/10.1042/etls20180004.
Pełny tekst źródłaTafur Rangel, Albert E., Abel García Oviedo, Freddy Cabrera Mojica, Jorge M. Gómez i Andrés Fernando Gónzalez Barrios. "Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement". Biochemical Engineering Journal 178 (styczeń 2022): 108268. http://dx.doi.org/10.1016/j.bej.2021.108268.
Pełny tekst źródłaZhang, Xiaomei, Zhenhang Sun, Jinyu Bian, Yujie Gao, Dong Zhang, Guoqiang Xu, Xiaojuan Zhang, Hui Li, Jinsong Shi i Zhenghong Xu. "Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli". Fermentation 8, nr 7 (25.06.2022): 299. http://dx.doi.org/10.3390/fermentation8070299.
Pełny tekst źródłaIacometti, Camillo, Katharina Marx, Maria Hönick, Viktoria Biletskaia, Helena Schulz-Mirbach, Beau Dronsella, Ari Satanowski i in. "Activating Silent Glycolysis Bypasses in Escherichia coli". BioDesign Research 2022 (12.05.2022): 1–17. http://dx.doi.org/10.34133/2022/9859643.
Pełny tekst źródłaJeong, Sun-Wook, Jun-Ho Kim, Ji-Woong Kim, Chae Yeon Kim, Su Young Kim i Yong Jun Choi. "Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin". Microorganisms 9, nr 1 (25.12.2020): 44. http://dx.doi.org/10.3390/microorganisms9010044.
Pełny tekst źródłaFuchino, Katsuya, Uldis Kalnenieks, Reinis Rutkis, Mara Grube i Per Bruheim. "Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains". Metabolites 10, nr 3 (26.02.2020): 81. http://dx.doi.org/10.3390/metabo10030081.
Pełny tekst źródłaArora, Neha, Hong-Wei Yen i George P. Philippidis. "Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts". Sustainability 12, nr 12 (23.06.2020): 5125. http://dx.doi.org/10.3390/su12125125.
Pełny tekst źródłaWang, Chenyang, Qinyu Li, Peng Zhou, Xiaojia Chen, Jiping Shi i Zhijun Zhao. "Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110". Microorganisms 10, nr 10 (28.09.2022): 1927. http://dx.doi.org/10.3390/microorganisms10101927.
Pełny tekst źródłaXu, Feng, Xiang Ke, Ming Hong, Mingzhi Huang, Chongchong Chen, Xiwei Tian, Haifeng Hang i Ju Chu. "Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea". Biochemical and Biophysical Research Communications 542 (luty 2021): 73–79. http://dx.doi.org/10.1016/j.bbrc.2021.01.024.
Pełny tekst źródłaWang, Xuan, Xianhao Xu, Jiaheng Liu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv i Long Liu. "Metabolic Engineering of Saccharomyces cerevisiae for Efficient Retinol Synthesis". Journal of Fungi 9, nr 5 (26.04.2023): 512. http://dx.doi.org/10.3390/jof9050512.
Pełny tekst źródłaXu, Jian, Li Zhou i Zhemin Zhou. "Enhancement of β-Alanine Biosynthesis in Escherichia coli Based on Multivariate Modular Metabolic Engineering". Biology 10, nr 10 (9.10.2021): 1017. http://dx.doi.org/10.3390/biology10101017.
Pełny tekst źródłaLee, Sang Jun, Dong-Yup Lee, Tae Yong Kim, Byung Hun Kim, Jinwon Lee i Sang Yup Lee. "Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation". Applied and Environmental Microbiology 71, nr 12 (grudzień 2005): 7880–87. http://dx.doi.org/10.1128/aem.71.12.7880-7887.2005.
Pełny tekst źródłaWang, Qingzhao, Mark S. Ou, Y. Kim, L. O. Ingram i K. T. Shanmugam. "Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase". Applied and Environmental Microbiology 76, nr 7 (29.01.2010): 2107–14. http://dx.doi.org/10.1128/aem.02545-09.
Pełny tekst źródłaDwijayanti, Ari, Marko Storch, Guy-Bart Stan i Geoff S. Baldwin. "A modular RNA interference system for multiplexed gene regulation". Nucleic Acids Research 50, nr 3 (21.01.2022): 1783–93. http://dx.doi.org/10.1093/nar/gkab1301.
Pełny tekst źródłaSheremetieva, M. E., K. E. Anufriev, T. M. Khlebodarova, N. A. Kolchanov i A. S. Yanenko. "Rational metabolic engineering of <i>Corynebacterium glutamicum</i> to create a producer of L-valine". Vavilov Journal of Genetics and Breeding 26, nr 8 (4.01.2023): 743–57. http://dx.doi.org/10.18699/vjgb-22-90.
Pełny tekst źródłaPyne, Michael E., Stanislav Sokolenko, Xuejia Liu, Kajan Srirangan, Mark R. Bruder, Marc G. Aucoin, Murray Moo-Young, Duane A. Chung i C. Perry Chou. "Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum". Applied and Environmental Microbiology 82, nr 17 (24.06.2016): 5375–88. http://dx.doi.org/10.1128/aem.01354-16.
Pełny tekst źródłaChoi, Bo Hyun, Hyun Joon Kang, Sun Chang Kim i Pyung Cheon Lee. "Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae". Microorganisms 10, nr 3 (18.03.2022): 650. http://dx.doi.org/10.3390/microorganisms10030650.
Pełny tekst źródłaParamasivan, Kalaivani, Aneesha Abdulla, Nabarupa Gupta i Sarma Mutturi. "In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement". Integrative Biology 14, nr 2 (luty 2022): 25–36. http://dx.doi.org/10.1093/intbio/zyac003.
Pełny tekst źródłaPyne, Michael, Murray Moo-Young, Duane Chung i C. Chou. "Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum". Fermentation 1, nr 1 (9.12.2015): 113–26. http://dx.doi.org/10.3390/fermentation1010113.
Pełny tekst źródłaDeeba, Farha, Kukkala Kiran Kumar, Girish H. Rajacharya i Naseem A. Gaur. "Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides". Journal of Fungi 7, nr 11 (13.11.2021): 967. http://dx.doi.org/10.3390/jof7110967.
Pełny tekst źródłaNeves, Rui P. P., Bruno Araújo, Maria J. Ramos i Pedro A. Fernandes. "Feedback Inhibition of DszC, a Crucial Enzyme for Crude Oil Biodessulfurization". Catalysts 13, nr 4 (13.04.2023): 736. http://dx.doi.org/10.3390/catal13040736.
Pełny tekst źródłaHuang, Mingtao, Yunpeng Bai, Staffan L. Sjostrom, Björn M. Hallström, Zihe Liu, Dina Petranovic, Mathias Uhlén, Haakan N. Joensson, Helene Andersson-Svahn i Jens Nielsen. "Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast". Proceedings of the National Academy of Sciences 112, nr 34 (10.08.2015): E4689—E4696. http://dx.doi.org/10.1073/pnas.1506460112.
Pełny tekst źródłaPan, Guohui, Zhengren Xu, Zhikai Guo, Hindra, Ming Ma, Dong Yang, Hao Zhou i in. "Discovery of the leinamycin family of natural products by mining actinobacterial genomes". Proceedings of the National Academy of Sciences 114, nr 52 (11.12.2017): E11131—E11140. http://dx.doi.org/10.1073/pnas.1716245115.
Pełny tekst źródłaDarbani, Behrooz. "Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44". International Journal of Molecular Sciences 22, nr 11 (26.05.2021): 5669. http://dx.doi.org/10.3390/ijms22115669.
Pełny tekst źródłaWiedemann, Beate, i Eckhard Boles. "Codon-Optimized Bacterial Genes Improve l-Arabinose Fermentation in Recombinant Saccharomyces cerevisiae". Applied and Environmental Microbiology 74, nr 7 (8.02.2008): 2043–50. http://dx.doi.org/10.1128/aem.02395-07.
Pełny tekst źródłaCarlson, Ross, David Fell i Friedrich Srienc. "Metabolic pathway analysis of a recombinant yeast for rational strain development". Biotechnology and Bioengineering 79, nr 2 (24.05.2002): 121–34. http://dx.doi.org/10.1002/bit.10305.
Pełny tekst źródłaWu, Sijia, Wenjuan Chen, Sujuan Lu, Hailing Zhang i Lianghong Yin. "Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects". Molecules 27, nr 15 (26.07.2022): 4779. http://dx.doi.org/10.3390/molecules27154779.
Pełny tekst źródłaMichael, Drew G., Ezekiel J. Maier, Holly Brown, Stacey R. Gish, Christopher Fiore, Randall H. Brown i Michael R. Brent. "Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast". Proceedings of the National Academy of Sciences 113, nr 47 (3.11.2016): E7428—E7437. http://dx.doi.org/10.1073/pnas.1603577113.
Pełny tekst źródłaChen, Zhen, Rajesh Reddy Bommareddy, Doinita Frank, Sugima Rappert i An-Ping Zeng. "Deregulation of Feedback Inhibition of Phosphoenolpyruvate Carboxylase for Improved Lysine Production in Corynebacterium glutamicum". Applied and Environmental Microbiology 80, nr 4 (13.12.2013): 1388–93. http://dx.doi.org/10.1128/aem.03535-13.
Pełny tekst źródłaLee, Sang Yup. "Metabolic Engineering and Synthetic Biology in Strain Development". ACS Synthetic Biology 1, nr 11 (16.11.2012): 491–92. http://dx.doi.org/10.1021/sb300109d.
Pełny tekst źródłaLong, Matthew R., Wai Kit Ong i Jennifer L. Reed. "Computational methods in metabolic engineering for strain design". Current Opinion in Biotechnology 34 (sierpień 2015): 135–41. http://dx.doi.org/10.1016/j.copbio.2014.12.019.
Pełny tekst źródłaBonk, Brian M., Yekaterina Tarasova, Michael A. Hicks, Bruce Tidor i Kristala L. J. Prather. "Rational design of thiolase substrate specificity for metabolic engineering applications". Biotechnology and Bioengineering 115, nr 9 (29.06.2018): 2167–82. http://dx.doi.org/10.1002/bit.26737.
Pełny tekst źródłaWoodruff, Lauren B. A., Brian L. May, Joseph R. Warner i Ryan T. Gill. "Towards a metabolic engineering strain “commons”: AnEscherichia coliplatform strain for ethanol production". Biotechnology and Bioengineering 110, nr 5 (29.01.2013): 1520–26. http://dx.doi.org/10.1002/bit.24840.
Pełny tekst źródłaDesai, Ruchir P., i Eleftherios T. Papoutsakis. "Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum". Applied and Environmental Microbiology 65, nr 3 (1.03.1999): 936–45. http://dx.doi.org/10.1128/aem.65.3.936-945.1999.
Pełny tekst źródłaHendry, John I., Anindita Bandyopadhyay, Shyam Srinivasan, Himadri B. Pakrasi i Costas D. Maranas. "Metabolic model guided strain design of cyanobacteria". Current Opinion in Biotechnology 64 (sierpień 2020): 17–23. http://dx.doi.org/10.1016/j.copbio.2019.08.011.
Pełny tekst źródłaMukhopadhyay, N. K., K. N. Ishihara, S. Ranganathan i K. Chattopadhyay. "Rational approximant structures and phason strain in icosahedral quasicrystalline phases". Acta Metallurgica et Materialia 39, nr 6 (czerwiec 1991): 1151–59. http://dx.doi.org/10.1016/0956-7151(91)90203-d.
Pełny tekst źródłaLibourel, Igor G. L., i Yair Shachar-Hill. "Metabolic Flux Analysis in Plants: From Intelligent Design to Rational Engineering". Annual Review of Plant Biology 59, nr 1 (czerwiec 2008): 625–50. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103822.
Pełny tekst źródłaStafford, Daniel E., i Gregory Stephanopoulos. "Metabolic engineering as an integrating platform for strain development". Current Opinion in Microbiology 4, nr 3 (czerwiec 2001): 336–40. http://dx.doi.org/10.1016/s1369-5274(00)00214-9.
Pełny tekst źródłaBiggs, Bradley Walters, Brecht De Paepe, Christine Nicole S. Santos, Marjan De Mey i Parayil Kumaran Ajikumar. "Multivariate modular metabolic engineering for pathway and strain optimization". Current Opinion in Biotechnology 29 (październik 2014): 156–62. http://dx.doi.org/10.1016/j.copbio.2014.05.005.
Pełny tekst źródłaKawaguchi, Hideo, Alain A. Vert�s, Shohei Okino, Masayuki Inui i Hideaki Yukawa. "Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum". Applied and Environmental Microbiology 72, nr 5 (maj 2006): 3418–28. http://dx.doi.org/10.1128/aem.72.5.3418-3428.2006.
Pełny tekst źródłaKroukamp, Heinrich, Riaan den Haan, John‐Henry van Zyl i Willem Heber van Zyl. "Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae". Biofuels, Bioproducts and Biorefining 12, nr 1 (8.10.2017): 108–24. http://dx.doi.org/10.1002/bbb.1824.
Pełny tekst źródłaTenhaef, Niklas, Robert Stella, Julia Frunzke i Stephan Noack. "Automated Rational Strain Construction Based on High-Throughput Conjugation". ACS Synthetic Biology 10, nr 3 (16.02.2021): 589–99. http://dx.doi.org/10.1021/acssynbio.0c00599.
Pełny tekst źródłaYi, Xiunan, i Hal S. Alper. "Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications". Life 12, nr 4 (30.03.2022): 510. http://dx.doi.org/10.3390/life12040510.
Pełny tekst źródłaTilloy, Valentin, Anne Ortiz-Julien i Sylvie Dequin. "Reduction of Ethanol Yield and Improvement of Glycerol Formation by Adaptive Evolution of the Wine Yeast Saccharomyces cerevisiae under Hyperosmotic Conditions". Applied and Environmental Microbiology 80, nr 8 (14.02.2014): 2623–32. http://dx.doi.org/10.1128/aem.03710-13.
Pełny tekst źródłaWei, Zeng, Xianai Shi, Rong Lian, Weibin Wang, Wenrong Hong i Shaobin Guo. "Exclusive Production of Gentamicin C1a from Micromonospora purpurea by Metabolic Engineering". Antibiotics 8, nr 4 (14.12.2019): 267. http://dx.doi.org/10.3390/antibiotics8040267.
Pełny tekst źródła