Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Rare earth sesquioxides.

Artykuły w czasopismach na temat „Rare earth sesquioxides”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Rare earth sesquioxides”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters i S. A. Basun. "Rare-earth-doped sesquioxides". Journal of Luminescence 87-89 (maj 2000): 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

ZINKEVICH, M. "Thermodynamics of rare earth sesquioxides". Progress in Materials Science 52, nr 4 (maj 2007): 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Granier, Bernard, i Serge Heurtault. "Density of Liquid Rare-Earth Sesquioxides". Journal of the American Ceramic Society 71, nr 11 (listopad 1988): C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Djuraev, Davron Rakhmonovich, i Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements". American Journal of Applied sciences 03, nr 01 (30.01.2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Pełny tekst źródła
Streszczenie:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
Style APA, Harvard, Vancouver, ISO itp.
5

Rodic, D., B. Antic i M. Mitric. "The rare earth ion distribution in mixed rare earth-yttrium sesquioxides". Journal of Magnetism and Magnetic Materials 140-144 (luty 1995): 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong i Alexandra Navrotsky. "Thermal Analysis of High Entropy Rare Earth Oxides". Materials 13, nr 14 (14.07.2020): 3141. http://dx.doi.org/10.3390/ma13143141.

Pełny tekst źródła
Streszczenie:
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
Style APA, Harvard, Vancouver, ISO itp.
7

Urban, Marek W., i Bahne C. Cornilsen. "Bonding anomalies in the rare earth sesquioxides". Journal of Physics and Chemistry of Solids 48, nr 5 (styczeń 1987): 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina i J. M. Rodríguez-Izquierdo. "HREM characterization of lanthana-supported rhodium catalysts". Proceedings, annual meeting, Electron Microscopy Society of America 48, nr 4 (sierpień 1990): 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Pełny tekst źródła
Streszczenie:
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
Style APA, Harvard, Vancouver, ISO itp.
9

Fedorov, P. P., M. V. Nazarkin i R. M. Zakalyukin. "On polymorphism and morphotropism of rare earth sesquioxides". Crystallography Reports 47, nr 2 (marzec 2002): 281–86. http://dx.doi.org/10.1134/1.1466504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sahu, P. Ch, Dayana Lonappan i N. V. Chandra Shekar. "High Pressure Structural Studies on Rare-Earth Sesquioxides". Journal of Physics: Conference Series 377 (30.07.2012): 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zelmon, David E., Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov i Klaus Petermann. "Temperature-dependent Sellmeier equations for rare-earth sesquioxides". Applied Optics 52, nr 16 (30.05.2013): 3824. http://dx.doi.org/10.1364/ao.52.003824.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Mikami, Masayoshi, i Shinichiro Nakamura. "Electronic structure of rare-earth sesquioxides and oxysulfides". Journal of Alloys and Compounds 408-412 (luty 2006): 687–92. http://dx.doi.org/10.1016/j.jallcom.2005.01.068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kränkel, Christian, Anastasia Uvarova, Christo Guguschev, Sascha Kalusniak, Lena Hülshoff, Hiroki Tanaka i Detlef Klimm. "Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]". Optical Materials Express 12, nr 3 (15.02.2022): 1074. http://dx.doi.org/10.1364/ome.450203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Polfus, Jonathan M., Truls Norby i Reidar Haugsrud. "Nitrogen defects from NH3in rare-earth sesquioxides and ZrO2". Dalton Trans. 40, nr 1 (2011): 132–35. http://dx.doi.org/10.1039/c0dt01068e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kimura, Shin-ichi, Fumitaka Arai i Mikihiko Ikezawa. "Optical Study on Electronic Structure of Rare-Earth Sesquioxides". Journal of the Physical Society of Japan 69, nr 10 (15.10.2000): 3451–57. http://dx.doi.org/10.1143/jpsj.69.3451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Dilawar, Nita, Deepak Varandani, Shalini Mehrotra, Himanshu K. Poswal, Surinder M. Sharma i Ashis K. Bandyopadhyay. "Anomalous high pressure behaviour in nanosized rare earth sesquioxides". Nanotechnology 19, nr 11 (19.02.2008): 115703. http://dx.doi.org/10.1088/0957-4484/19/11/115703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Norby, Truls, Oddvar Dyrlie i Per Kofstad. "Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides". Journal of the American Ceramic Society 75, nr 5 (maj 1992): 1176–81. http://dx.doi.org/10.1111/j.1151-2916.1992.tb05556.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Shah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach i Michael Ruck. "Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids". Chemistry 5, nr 2 (2.06.2023): 1378–94. http://dx.doi.org/10.3390/chemistry5020094.

Pełny tekst źródła
Streszczenie:
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly.
Style APA, Harvard, Vancouver, ISO itp.
19

Ben Salem, M., i B. Yangui. "Domain Structures in Ferroelastic Materials: Case of Rare Earth Sesquioxides". Key Engineering Materials 101-102 (marzec 1995): 61–94. http://dx.doi.org/10.4028/www.scientific.net/kem.101-102.61.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Arai, Fumitaka, Shin-ichi Kimura i Mikihiko Ikezawa. "Resonant Photoemission Study of Electronic Structure of Rare-Earth Sesquioxides". Journal of the Physical Society of Japan 67, nr 1 (15.01.1998): 225–29. http://dx.doi.org/10.1143/jpsj.67.225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Dilawar, Nita, Shalini Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar i A. K. Bandyopadhyay. "A Raman spectroscopic study of C-type rare earth sesquioxides". Materials Characterization 59, nr 4 (kwiecień 2008): 462–67. http://dx.doi.org/10.1016/j.matchar.2007.04.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Nagao, Mahiko, Hideaki Hamano, Koji Hirata, Ryotaro Kumashiro i Yasushige Kuroda. "Hydration Process of Rare-Earth Sesquioxides Having Different Crystal Structures". Langmuir 19, nr 22 (październik 2003): 9201–9. http://dx.doi.org/10.1021/la020954y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Tang, M., J. A. Valdez, K. E. Sickafus i P. Lu. "Order-disorder phase transformation in ion-irradiated rare earth sesquioxides". Applied Physics Letters 90, nr 15 (9.04.2007): 151907. http://dx.doi.org/10.1063/1.2720716.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Salem, M. Ben, B. Yangui, G. Schiffmacher i C. Boulesteix. "Twinning of the hexagonal (A) structure of rare earth sesquioxides". physica status solidi (a) 87, nr 2 (16.02.1985): 527–36. http://dx.doi.org/10.1002/pssa.2210870214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kriklya, A. I. "High-temperature heat capacity of sesquioxides of rare-earth metals". Powder Metallurgy and Metal Ceramics 38, nr 5-6 (maj 1999): 274–77. http://dx.doi.org/10.1007/bf02675775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Fellner, Madeleine, Alberto Soppelsa i Alessandro Lauria. "Heat-Induced Transformation of Luminescent, Size Tuneable, Anisotropic Eu:Lu(OH)2Cl Microparticles to Micro-Structurally Controlled Eu:Lu2O3 Microplatelets". Crystals 11, nr 8 (20.08.2021): 992. http://dx.doi.org/10.3390/cryst11080992.

Pełny tekst źródła
Streszczenie:
Synthetic procedures to obtain size and shape-controlled microparticles hold great promise to achieve structural control on the microscale of macroscopic ceramic- or composite-materials. Lutetium oxide is a material relevant for scintillation due to its high density and the possibility to dope with rare earth emitter ions. However, rare earth sesquioxides are challenging to synthesise using bottom-up methods. Therefore, calcination represents an interesting approach to transform lutetium-based particles to corresponding sesquioxides. Here, the controlled solvothermal synthesis of size-tuneable europium doped Lu(OH)2Cl microplatelets and their heat-induced transformation to Eu:Lu2O3 above 800 °C are described. The particles obtained in microwave solvothermal conditions, and their thermal evolution were studied using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy, thermogravimetric analysis (TGA), luminescence spectroscopy (PL/PLE) and infrared spectroscopy (ATR-IR). The successful transformation of Eu:Lu(OH)2Cl particles into polycrystalline Eu:Lu2O3 microparticles is reported, together with the detailed analysis of their initial and final morphology.
Style APA, Harvard, Vancouver, ISO itp.
27

Irshad, K. A., N. V. Chandrashekar i S. Kalavathi. "Polymorphism in rare earth sesquioxides: dependence on pressure and cationic radii". Acta Crystallographica Section A Foundations and Advances 73, a2 (1.12.2017): C1256. http://dx.doi.org/10.1107/s2053273317083188.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Lupascu, D., M. Uhrmacher i K. P. Lieb. "Electric field gradients of111Cd in monoclinic (B-phase) rare earth sesquioxides". Journal of Physics: Condensed Matter 6, nr 48 (28.11.1994): 10445–56. http://dx.doi.org/10.1088/0953-8984/6/48/006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kolorenč, Jindřich. "Metal-Oxygen Hybridization and Core-Level Spectra in Actinide and Rare-Earth Oxides". MRS Advances 1, nr 44 (2016): 3007–12. http://dx.doi.org/10.1557/adv.2016.403.

Pełny tekst źródła
Streszczenie:
ABSTRACT We employ a combination of the density-functional theory and the dynamical mean-field theory to study the electronic structure of selected rare-earth sesquioxides and dioxides. We concentrate on the core-level photoemission spectra, in particular, we illustrate how these spectra reflect the integer or fractional filling of the 4f orbitals. We compare the results to our earlier calculations of actinide dioxides and analyze why the core-level spectra of actinide compounds display a substantially reduced sensitivity to the filling of the 5f orbitals.
Style APA, Harvard, Vancouver, ISO itp.
30

Tang, M., P. Lu, J. A. Valdez i K. E. Sickafus. "Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)". Journal of Applied Physics 99, nr 6 (15.03.2006): 063514. http://dx.doi.org/10.1063/1.2184433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bezzine, K., N. Benayad, M. Djermouni, S. Kacimi i A. Zaoui. "Enhanced d0 ferromagnetism via carbon doping in rare-earth sesquioxides: DFT prediction". Journal of Magnetism and Magnetic Materials 563 (grudzień 2022): 169910. http://dx.doi.org/10.1016/j.jmmm.2022.169910.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bernal, S., F. J. Botana, R. García i J. M. Rodríguez-Izquierdo. "Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water". Reactivity of Solids 4, nr 1-2 (październik 1987): 23–40. http://dx.doi.org/10.1016/0168-7336(87)80085-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Hinteregger, Ernst, Michael Enders, Almut Pitscheider, Klaus Wurst, Gunter Heymann i Hubert Huppertz. "High-pressure Syntheses and Characterization of the Rare-earth Fluoride Borates RE2(BO3)F3 (RE=Tb, Dy, Ho)". Zeitschrift für Naturforschung B 68, nr 11 (1.11.2013): 1198–206. http://dx.doi.org/10.5560/znb.2013-3258.

Pełny tekst źródła
Streszczenie:
The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.
Style APA, Harvard, Vancouver, ISO itp.
34

Dilawar Sharma, Nita, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra i A. K. Bandyopadhyay. "Pressure-Induced Structural Transition Trends in Nanocrystalline Rare-Earth Sesquioxides: A Raman Investigation". Journal of Physical Chemistry C 120, nr 21 (23.05.2016): 11679–89. http://dx.doi.org/10.1021/acs.jpcc.6b02104.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Antic, B., A. Kremenovic, I. Draganic, Ph Colomban, D. Vasiljevic-Radovic, J. Blanusa, M. Tadic i M. Mitric. "Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides". Applied Surface Science 255, nr 17 (czerwiec 2009): 7601–4. http://dx.doi.org/10.1016/j.apsusc.2009.04.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kimmel, Giora, Roni Z. Shneck, Witold Lojkowski, Ze'ev Porat, Tadeusz Chudoba, Dmitry Mogilyanski, Stanislaw Gierlotka, Vladimir Ezersky i Jacob Zabicky. "Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale". Journal of the American Ceramic Society 102, nr 7 (18.03.2019): 3829–35. http://dx.doi.org/10.1111/jace.16396.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Sattonnay, G., S. Bilgen, L. Thomé, C. Grygiel, I. Monnet, O. Plantevin, C. Huet, S. Miro i P. Simon. "Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation". physica status solidi (b) 253, nr 11 (1.08.2016): 2110–14. http://dx.doi.org/10.1002/pssb.201600451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Frayret, Christine, Antoine Villesuzanne, Michel Pouchard, Fabrice Mauvy, Jean Marc Bassat i Jean Claude Grenier. "A Density Functional Study of Oxygen Mobility in Ceria-Based Materials". Defect and Diffusion Forum 323-325 (kwiecień 2012): 233–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.233.

Pełny tekst źródła
Streszczenie:
In CeO2-based solid electrolytes, it has been shown that point defects are directly responsible for oxygen ionic conduction. The ionic conductivity is strongly affected by the anion vacancy concentration which is enhanced by doping with aliovalent cations. When rare earth sesquioxides such as La2O3, Gd2O3, Sm2O3, Y2O3 are added to CeO2, the dopant cation substitutes for the cerium ion, and oxygen vacancies are created for charge compensation. Incorporation of trivalent dopants into CeO2 at the Ce4+ sites can be depicted by the following defect reaction (expressed in Kröger-Vink notation):
Style APA, Harvard, Vancouver, ISO itp.
39

Guo, Bing, Ashley S. Harvey, John Neil, Ian M. Kennedy, Alexandra Navrotsky i Subhash H. Risbud. "Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase". Journal of the American Ceramic Society 90, nr 11 (listopad 2007): 3683–86. http://dx.doi.org/10.1111/j.1551-2916.2007.01961.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Boulesteix, C., M. Ben Salem i B. Yangui. "Domain structures and plasticity of ferroelastic materials: Case of rare earth sesquioxides and YBa2Cu3O7". Journal of the Less Common Metals 156, nr 1-2 (grudzień 1989): 29–41. http://dx.doi.org/10.1016/0022-5088(89)90404-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Balamurugan, Sarkarainadar, Ute Ch Rodewald, Thomas Harmening, Leo van Wüllen, Daniel Mohr, Heinz Deters, Hellmut Eckert i Rainer Pöttgen. "PbO / PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals – Structure and Solid-State NMR Spectroscopy". Zeitschrift für Naturforschung B 65, nr 10 (1.10.2010): 1199–205. http://dx.doi.org/10.1515/znb-2010-1004.

Pełny tekst źródła
Streszczenie:
Well-shaped small single crystals of the orthorhombic perovskites YScO3 and LaScO3 were grown from mixtures of the corresponding sesquioxides RE2O3 in PbO/PbF2 fluxes. Both structures were refined from single-crystal diffractometer data: GdFeO3-type, Pnma, a = 570.68(7), b = 789.3(1), c = 542.44(7) pm, wR2 = 0.0363, 448 F2 values for Y0.96ScO2.94, and a = 579.68(9), b = 810.3(2), c = 568.3(1) pm, wR2 = 0.0387, 513 F2 values for La0.94ScO2.91, with 32 variables per refinement. The 4c rare-earth sites of both perovskites show small defects which are charge-compensated by defects on both oxygen sites, leading to the compositions La0.94ScO2.91 and Y0.96ScO2.94 for the investigated crystals. The rare-earth sites have been characterized by 89Y and 45Sc magic-angle spinning (MAS) NMR. The 45Sc quadrupolar interaction parameters extracted from these spectra by simulations are found to be in good agreement with those obtained from DFT calculations of the electric field gradient.
Style APA, Harvard, Vancouver, ISO itp.
42

Feng, Xiao, Chunmei Jia, Jing Wang, Xiaocong Cao, Panjuan Tang i Wenbing Yuan. "Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates". Green Chemistry 17, nr 7 (2015): 3740–45. http://dx.doi.org/10.1039/c5gc00378d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Niehle, Michael, i Achim Trampert. "Atomic interface structure of bixbyite rare-earth sesquioxides grown epitaxially on Si(1 1 1)". Journal of Physics D: Applied Physics 45, nr 29 (2.07.2012): 295302. http://dx.doi.org/10.1088/0022-3727/45/29/295302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Novoselov, A., J. H. Mun, R. Simura, A. Yoshikawa i T. Fukuda. "Micro-pulling-down: A viable approach to the crystal growth of refractory rare-earth sesquioxides". Inorganic Materials 43, nr 7 (lipiec 2007): 729–34. http://dx.doi.org/10.1134/s0020168507070114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Singh, Nirpendra, Sapan Mohan Saini, Tashi Nautiyal i Sushil Auluck. "Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd)". Journal of Applied Physics 100, nr 8 (15.10.2006): 083525. http://dx.doi.org/10.1063/1.2353267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

SAIKI, Atsushi, Nobuo ISHIZAWA, Nobuyasu MIZUTANI i Masanori KATO. "Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature". Journal of the Ceramic Association, Japan 93, nr 1082 (1985): 649–54. http://dx.doi.org/10.2109/jcersj1950.93.1082_649.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Meena, Seema Kumari, Lekhraj Meena, N. L. Heda i B. L. Ahuja. "High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3". Radiation Physics and Chemistry 176 (listopad 2020): 108990. http://dx.doi.org/10.1016/j.radphyschem.2020.108990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abrashev, M. V., N. D. Todorov i J. Geshev. "Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study". Journal of Applied Physics 116, nr 10 (14.09.2014): 103508. http://dx.doi.org/10.1063/1.4894775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Galenin, Evgeny, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha i in. "Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method". Crystals 13, nr 4 (31.03.2023): 591. http://dx.doi.org/10.3390/cryst13040591.

Pełny tekst źródła
Streszczenie:
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure.
Style APA, Harvard, Vancouver, ISO itp.
50

Maslen, E. N., V. A. Streltsov i N. Ishizawa. "A synchrotron X-ray study of the electron density in C-type rare earth oxides". Acta Crystallographica Section B Structural Science 52, nr 3 (1.06.1996): 414–22. http://dx.doi.org/10.1107/s0108768195013371.

Pełny tekst źródła
Streszczenie:
Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii