Rozprawy doktorskie na temat „Rare-earth doped phosphors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 20 najlepszych rozpraw doktorskich naukowych na temat „Rare-earth doped phosphors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Shalav, Avi School of Photovoltaic & Renewable Energy Engineering UNSW. "Rare-earth doped up-converting phosphors for an enhanced silicon solar cell response". Awarded by:University of New South Wales. School of Photovoltaic and Renewable Energy Engineering, 2006. http://handle.unsw.edu.au/1959.4/24184.
Pełny tekst źródłaGao, Yuan. "Design of rare-earth-doped inorganic phosphors and luminescence enhancement by plasmonic effects". Kyoto University, 2020. http://hdl.handle.net/2433/253288.
Pełny tekst źródłaPadhye, P. "Study of tunable optical properties of lanthanide-ion-doped rare earth phosphors and their applications". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5892.
Pełny tekst źródłaNishiura, Shotaro. "Preparation and Optical Properties of Rare Earth Doped Ceramic Phosphors for White Light Emitting Diode". Kyoto University, 2013. http://hdl.handle.net/2433/175019.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第17670号
人博第637号
新制||人||153(附属図書館)
24||人博||637(吉田南総合図書館)
30436
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 田部 勢津久, 教授 杉山 雅人, 教授 加藤 立久
学位規則第4条第1項該当
Katayama, Yumiko. "Optical and photo-electric studies on quantum cutting and persistent luminescent phosphors doped with rare-earth and transition-metal ions". Kyoto University, 2014. http://hdl.handle.net/2433/188818.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第18380号
人博第693号
新制||人||166(附属図書館)
25||人博||693(吉田南総合図書館)
31238
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 田部 勢津久, 教授 加藤 立久, 教授 杉山 雅人, 教授 森本 芳則, 教授 山本 行男
学位規則第4条第1項該当
Ireland, Terry G. "Precipitation techniques and characterisation of rare earth element doped phosphor materials". Thesis, University of Greenwich, 2008. http://gala.gre.ac.uk/6195/.
Pełny tekst źródłaYamane, H., T. Kawano, K. Tatsumi, S. Muto i Y. Fujimichi. "Quantitative determination of site occupancy of multi-rare-earth elements doped into Ca2SnO4 phosphor by electron channeling microanalysis". Elsevier, 2010. http://hdl.handle.net/2237/20789.
Pełny tekst źródłaYamane, H., T. Kawano, K. Tatsumi, Y. Fujimichi i S. Muto. "Site occupancy determination of Eu/Y doped in Ca2SnO4 phosphor by electron channeling microanalysis". Elsevier, 2011. http://hdl.handle.net/2237/20827.
Pełny tekst źródłaLiu, Tzu-Chen, i 劉子晨. "Structural and Luminescent Properties of Multi-functional Rare-earth Doped Phosphors". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/21693165927719900386.
Pełny tekst źródła國立臺灣大學
化學研究所
100
The applications of phosphors according to different excitation sources are versatile due to the utilization of rare earth ions. The tunable energy levels of 5d orbital and the large number of energy levels of 4f orbitals can emit photons with different wavelength. In this thesis, excitation sources from vacuum ultraviolet (VUV), ultraviolet (UV) to visible photons, and electrons are investigated. Emission ranges from UV to visible range and near-infrared (NIR) are also utilized. The third chapter focuses on the synthesis of red-emitting oxynitride phosphor. Intraconfigurational 4f → 4f transitions are designed because of the determined environment for 5d → 4f transitions. The high thermal stability reveals that β–SiAlON is a good candidate for white light-emitting diodes (wLEDs) and plasma display panels (PDP). Pr3+ ions show the possibility of an alternative for red emitting activators. In the fourth chapter, comparison of LED- and FED-used phosphors under electron bombardment is made and it suggests a new class of host lattice should be developed. Evidences from solid-state nuclear magnetic resonance (ssNMR) lead to a different explanation of the incorporation of rare-earth ions into AlN host lattice. A new phosphor composition of AlN doped with Si4+ and Ce3+ ions is synthesized and shows the validity for field emission displays. The fifth chapter includes two proposed quantum cutting (QC) rare-earth combination for enhancing the efficiency of crystalline silicon (c-Si)-based solar cells: (1) adding a sensitizer to transfer the excited energy to the donor with 4f → 4f transitions , and (2) using a broad band donor such as Eu2+ and Ce3+ ions. It is concluded that due to the high energy of phonons required for Ce3+ ions, Eu2+-Yb3+ pairs is a better choice.
LI, YI-SIOU, i 李逸修. "Synthesis and Luminescent Properties of Alkaline Earth Metal Tellurite Phosphors Doped with Rare Earth Elements". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/7xre9h.
Pełny tekst źródła明新科技大學
化學工程與材料科技系碩士班
107
The main lattice material of this study is carbonate,Doping the activation centers: Tb3+, Gd3+, Ce3+, respectively, to prepare red, green, and blue primary color phosphors,The synthesis method is a wet method in a solid-phase synthesis method, and is heated to 900℃and 1400℃at a temperature increase rate of 10℃per minute in a high-temperature furnace, and the calcination is carried out for 10 hours while the calcination is completed. The phosphor powder is finished and tested. The crystal structure is detected by X-ray diffraction (XRD), and the excitation and emission spectra of the phosphor are detected by photoluminescence (PL). Enter the CIE chromaticity coordinate map to know the exact color of the sample. 1.Sr2SiO4 series The sample with added Ce3+ ions has nonlinear optical blue light, and the sample with Tb3+ ions emits green light, while the addition of two rare piles of the earth (Ce3+, Tb3+) emits blue light and also has the characteristics of the above two samples. 2.Ba2SiO4 series The sample with Ce3+ ion added and calcined at 1400 °C has a nonlinear optical blue light. The sample with Tb3+ ion and calcined at 1400 °C emits green light while adding two rare piles of the earth (Ce3+, Tb3+) to emit blue light. With the characteristics of the above two samples, the same calcination temperature is also visible at 1400 °C. 3.Ca2SiO4 series When the calcination temperature is 1400 °C, the luminescence efficiency and crystallinity are better. The sample with Ce3+ has nonlinear optics and emits blue light; the sample with Tb3+ emits green light; while the sample with Ce3+ and Tb3+ remains at the same time. The characteristics of the aforementioned samples showed that the sample to which Gd3+ was added emitted red light.
Han-LinHsu i 徐漢霖. "Synthesis and luminescent properties of rare-earth ion doped Li3Ba2La3(MoO4)8 phosphors". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/42024449184955709194.
Pełny tekst źródła國立成功大學
材料科學及工程學系碩博士班
98
Rare-earth (RE) ion doped phosphors, Li3Ba2La3-xREx(MoO4)8 (RE = Eu3+, Dy3+), were synthesized by a solid-state reaction process at 800C. The structural and photoluminescent properties of the prepared phosphors were investigated by X-ray diffraction, scanning electron microscopy, Raman scatter spectroscopy, UV-visible absorption, and photoluminescence (PL) spectroscopy. The aim of the research was to develop novel phosphors for the UV-LED to white light conversions. The experimental results showed that the dominant emissions of the Li3Ba2La3-xEux(MoO4)8 phosphors under the UV excitation (394 nm) were at 593 nm and 618 nm, originating from the electronic transitions between the trivalent RE states. Due to the high phonon frequency of the host lattice, the transitions from the emitting levels higher than 5D0 were not observed in the PL spectra. The above two observed emissions were due to the 5D0->7F1 (593 nm) and 5D0->7F2 (618 nm) transitions. In particular, the 5D0->7F2 emission was very strong and for the x=2.1 samples, its peak intensity was about 3.3 times more than the commercial phosphors ZnS:(Mn2+,Te2+). The CIE chromaticity coordinate of the Li3Ba2La0.9Eu2.1(MoO4)8 red emissions was calculated to be at (0.67, 0.33), which is almost the same as the standard red chromaticity of the NTSC system. In the Li3Ba2La3-xDyx(MoO4)8 (x=0.01-0.24) series, the dominant emissions under the UV excitation (388 nm) were from the 4F9/2->6H15/2 (blue) and 4F9/2->6H13/2 (yellow) transitions, and the intensity of the later was stronger. The mixture of all the emissions had the CIE chromaticity coordinates at (0.35, 0.40), which is at the yellowish-white color region.
Srivastava, Shubham. "Borohydride Synthesis for Development of Rare Earth Doped and Co-Doped Yttrium Borate Phosphors for Luminescent Applications". Thesis, 2017. http://ethesis.nitrkl.ac.in/9387/1/2017_PhD_SSrivastava_512CR3011.pdf.
Pełny tekst źródłaChen, Shing-Nian, i 陳星年. "The Synthesis and Luminescence Characterization of Some Rare Earth-Doped Fluorosulfide and Oxyfluorosulfide Phosphors". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/30524417694768071046.
Pełny tekst źródła國立交通大學
應用化學系分子科學碩博士班
100
Fluorosulfide and oxyfluorosulfide-based phosphors have relatively low synthetic temperature and appropriate excitation wavelengths for applications in fabricating white-light LEDs. To enhance the thermal stability of sulfides, we choose the fluorosulfides and oxyfluorosulfide as host matrices and activated with Ce3+ and Eu2+ as activator, respectively. In this study, we have prepared five series of fluorosulfide and oxyfluorosulfide phosphors, viz., Y3S2OF3:Ce3+, La2MF4S2:Ce3+ and La2MF4S2:Eu2+(M = Ca, Sr) using sealed quartz tube at 850-1000℃and 1150℃, respectively. These phosphors can be excited by radiation with wavelength ranging from 300 nm to 500 nm and their emission colors almost cover the whole visible spectral range. The content of this thesis can be divided into two parts. Firstly, we will introduce the background knowledge of phosphors used in LEDs, and then elaborate the design rules, the motivations and goals of the study. The synthetic methods and further characterization results will be discussed in the second part.
Chang, Yee-Cheng, i 張翌誠. "Synthesis and photo-luminescence properties of rare earth ion doped Li3Ba2Gd3(MoO4)8 phosphors". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/03947122628165768871.
Pełny tekst źródła國立成功大學
材料科學及工程學系碩博士班
97
The objet of this study is to synthesize Li3Ba2Gd3(MoO4)8 doped with various activators(Eu3+,Tb3+,Dy3+,Er3+,Sm3+), and the raw material had been mechanically activated by grinding in high energy vibromill followed by calcined at temperature of 900℃ for 12 h. By using XRD, SEM, PL spectra, and UV-visable spectra, the characterization of structure, morphology of powders and photo-luminescent properties of phosphors were analized. The dominant emission peaks of Li3Ba2Gd3(MoO4)8:Eu3+ phosphor are 5D0→7F1(591nm)、5D0 →7F2(614nm) which are originate from intra-4f transitions of excited state. The intensity of the emission from 5D0 to 7F2 is stronger than 5D0 to 7F1 and three times more than commercial phosphors, ZnS:Mn2+,Te2+ when Eu3+ concentration in x=2.4. The CIE chromaticity coordinates of red emission of the Li3Ba2Gd0.6Eu2.4(MoO4)8 phosphor is (0.67, 0.33) which is just at NTSC system standard red chromaticity. There are two regions in the excitation spectra of Li3Ba2Gd2 Tb1(MoO4)8 phosphor;one is assigned from 4f��5d transition in 200 to 300 nm, and the others are from intra-4f transitions in 350 to 500 nm. The dominant emission peak of Li3Ba2Gd2Tb1(MoO4)8 phosphor is 5D4��7F5 under excitation of 307nm. The CIE chromaticity coordinates of green emission of the Li3Ba2Gd2 Tb1(MoO4)8 phosphor is (0.25, 0.58). The the other series of green phosphor is Li3Ba2Gd2.95Er0.05(MoO4)8.Because its emission peaks locates in the light of green region, it has better color rendering index than Li3Ba2Gd2 Tb1(MoO4)8. However, the valence electrons are shielded by the 5s and 5p outer electrons, the valance electrons of trivalent rare earth ions are weakly affected by ligand ions in crystals, so the features of optical spectra of the most phosphors doped with trivalent rare earth, such as Li3Ba2Gd3(MoO4)8:Dy3+ and Li3Ba2Gd3(MoO4)8:Sm3+ is similar to those expected for free ions.
Lee, Szu-Ping, i 李思屏. "The Synthesis, Luminescence Properties, and Applications of Novel Rare Earth-doped Thiosilicate-based Phosphors". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/99210465487605962405.
Pełny tekst źródła國立交通大學
應用化學系碩博士班
105
The thesis is divided into three parts. Firstly, the study of the blue LED-excitable cyan-emitting, green-emitting, and reddish orange-emitting thiosilicate phosphors. Secondly, the study of the blue LED-excitable cyan-emitting and reddish orange-emitting halothiosilicate phosphors. Finally, the study of the near-UV LED excitable cyan-emitting and green-emitting thiogallates. In Chapter 1, the research background and current status of sulfides and thiosilicates are introduced, and the motivations and goals of this thesis are elaborated. The literature review was focused on the fundamentals of phosphors, concentration quenching of activators, and mechanism of energy transfer of different types of phosphors. In Chapter 2, we describe the synthesis and characterization methods of the thiosilicate phosphors; BaLa2Si2S8:R (R = Ce3+ or Eu2+), CaY2Si2S8:Ce3+, La3Br(SiS4)2:R (R = Ce3+ or Eu2+), BaGa2SiS6:Eu2+, and Ba2Ga8SiS16:Eu2+. In Chapter 3, we discuss the crystal structure and spectroscopic properties of the BaLa2Si2S8:R (R = Ce3+, Eu2+), CaY2Si2S8:Ce3+, La3Br(SiS4)2:R’ (R’ = Ce3+ or Eu2+), BaGa2SiS6:Eu2+, and Ba2Ga8SiS16:Eu2+ phosphors and their LED lighting applications. In Chapter 4, the properties of the thiosilicate phosphors are summarized and the future work is discussed.
Hsu, Fang-Jung, i 許芳榕. "Synthesis and Luminescence Characterizations of New Ultraviolet B&C-Emitting Rare Earth-Doped Phosphors". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/48097170080932342911.
Pełny tekst źródła國立交通大學
應用化學系碩博士班
102
With the gradual enhancement of environmental awareness, the development of green luminescent materials has been an important issue in phosphors research. This research is attempted to synthesize and investigate new UV-emitting materials, which can be excitated by 172 nm and used for the applications of phototherapy, sterilization, and disinfection. We have explored and investigated the luminescence mechanism of four series of UV-emitting phosphors, including nine types of rare earth-doped phosphates, silicates and borates. In this study, using the vacuum ultraviolet (VUV) light source provided by National Synchrotron Radiation Research Center (NSRRC), as well as the X-ray diffraction technique and electron microscopy analysis, we have prepared and investigated UVB-emitting NaCa(Y,Gd) (PO4)2, Na2(Y,Gd)2O(BO3)2, Li6(Y,Gd)(BO3)3, Na(Y,Gd)Si2O6, NaCa (Y,Pr,Gd)(PO4)2, Li6(Y,Pr,Gd)(BO3)3 and Na(Y,Pr,Gd)Si2O6; UVC- emitting NaCa(Y,Pr)(PO4)2 and Na(Y,Pr)Si2O6. Under excitation at 172 nm, the NaCa(Y,Gd)(PO4)2, Na2(Y,Gd)2O(BO3)2, Li6(Y,Gd)(BO3)3, Na(Y,Gd)Si2O6, NaCa(Y,Pr,Gd) (PO4)2, Li6(Y,Pr,Gd)(BO3)3 and Na(Y,Pr,Gd)Si2O6 phosphors were found to give sharp UVB emission centered at 313 nm, which was attributed to the 4f7→4f7 transition of Gd3+. Under the same excitation, NaCa(Y,Pr)(PO4)2 and Na(Y,Pr)Si2O6 were found to emit UVC light, which was found to be due to the 4f15d1 →4f 2 transition of Pr3+. With the co-doping of Pr3+ as a sensitizer, NaCa(Y,Pr,Gd)(PO4)2, Li6(Y,Pr,Gd)(BO3)3, and Na(Y,Pr,Gd) Si2O6 exhibit a much stronger emission at 313 nm. The emission intensity of the UVB-emitting NaCa(Y0.8293Pr0.0007Gd0.17)(PO4)2, Li6(Y0.695Pr0.005 Gd0.3)(BO3)3 and Na(Y0.775Pr0.005 Gd0.22)Si2O6 was found to be 1.6, 5.4, and 1.4 times that of the UVB emission of the patented LaB3O6:Bi3+,Gd3+ commodity, respectively. Our investigation results indicate that the above three Pr3+/Gd3+-coactivated phosphors may have great potential for practical application in phototherapy and tanning. The luminescence performance of all types of UV radiation was found to be crucially dependent on the chemical compositions, bonding and crystal structure of the host matrix.
Han-YuLin i 林含諭. "The Syntheses and Optical Analyses of Down-Shifting and Up-Conversion Phosphors: Calcium Vanadate-Based Hosts Doped with Trivalent Rare Earth Ions". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/b9mjyj.
Pełny tekst źródła國立成功大學
電機工程學系碩博士班
101
Our previous work [J. Am. Ceram. Soc., 93, 138 (2010)] reported a red phosphor Ca2.82(VO4)2:0.12Eu3+ which was well-excited by 465-nm blue light and was therefore a candidate for application to the phosphor-converted WLED (pc-WLED) with a blue chip (450-470 nm). On the basis of Ca2.82(VO4)2:0.12Eu3+, we sought to develop down-shifting (DS) inorganic phosphors for use in pc-WLEDs by the commonly-used solid-state reaction method, which was the main purpose of the present research. We found that substitution of not only a larger ion like Ba2+ [J. Am. Ceram. Soc., 93, 138 (2010)] but also a smaller one like Mg2+ (this research) replacing no > 14.9% Ca2+ ions could enhance the integrated DS emission intensity of red phosphor Ca3(VO4)2:0.12Eu3+, indicating that both lattice expansion and contraction could decrease the site symmetry of Eu3+ in Ca3(VO4)2:0.12Eu3+ phosphor. This finding is anticipated to improve the Eu3+ emission intensity of other Eu3+-doped phosphors. To further investigate Eu3+ up-conversion (UC) behaviors, Yb3+ ion was used as a sensitizer. Interestingly, the enhanced Eu3+ emission from 5D1,2,3 states under UC excitation was observed as compared to that under DC excitation. This phenomenon led to the variation in the emission color of the optimized (Ca0.742Mg0.067)2.82(VO4)2:0.36Yb3+,0.12Eu3+ phosphor from red to near warm white as the excitation mechanism changed from DS to UC. Additionally, it was found that substitution of 3% Sr2+ replacing Ca2+ enhanced the red emission intensity of Ca2.82(VO4)2:0.12Eu3+ by 14% under 465-nm excitation. The conventional methods to determine multipolar mechanisms responsible for the energy transfer between different ions (I0/I - C plot) and alike ions (log(C/I) - logC plot) supposed hypotheses of I0/I ≫ 1 and βCθ/3 ≫ 1, respectively, where I0 and I are the emission intensity of the energy donor in the absence and presence of the acceptor; C is the sum of both energy donor and acceptor contents; θ represents the type of multipolar interactions, and β is a constant for each interaction. Compared with the conventional methods, the modified methods for investigation of the multipolar energy transfer proposed in this research demonstrated more precise and valid results. Excluding the prerequisite of I0/I ≫ 1, the concentration-dependent dipole-dipole multipolar interactions for the Sm3+ → Eu3+ energy transfer were observed for the first time based on the fitting results of (I0/I - 1) - C plots. Additionally, the Harris model was found to be an alternative way to release us from the prerequisite of βCθ/3 ≫ 1 when fitting the I/C - C plot. And a dipole-dipole multipolar interaction of 3-body type was found to be responsible for the concentration quenching of Sm3+ emission around 951 nm in the (Ca0.97Sr0.03)3(VO4)2 host.
De, Arnab. "Lanthanide Photoluminescence: A Tool for Analyzing Local Heterogeneity in Ferroelectrics and Scope for High Performance Optical Thermometry". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4929.
Pełny tekst źródłaDepartment of Science and Technology (DST)-Government of India (Inspire fellowship), Engineering Research Board (SERB) of the Ministry of Science and Technology-Government of India (Grant no. EMR/ 2016/001457)
Yu, Chao-Jung, i 余昭蓉. "The synthesis and characterization of rare-earth doped Y3Al5O12 phosphor powders". Thesis, 1997. http://ndltd.ncl.edu.tw/handle/28619383947181174130.
Pełny tekst źródła國立交通大學
應用化學研究所
85
This research is attempted to investigate the chemical synthesis and the effects of quantity and types of rare-earth activator (R3+) doping on the structural and luminescent properties of the Y3Al5O12(YAG) phosphors. Well crystalline and x-ray pure powers of R-doped (R=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) YAG were synthesized by heat treatment of gel-precipitated precursors, first at 300℃ for 3 hours and then at 980℃ for 8 hours. The effects of sntering time and temperature on the purity of R-doped YAG was also investigated to determine the optimal preparation conditions. Cell parameters of R-doped YAG phases as a function of R3+ size were found to decrease, in general, as the atomic number of R increased due to lanthanide contraction, as indicated by x-ray diffraction data. The intensity of luminescent emission for R-doped YAG phase was found to first increase with increasing activator R concentration (i.e., x), then reach a maximum and finally decrease as x further increases. In order to investigate the concentration effect of Sm activator on the spectral properties and color characteristics, we have also prepared a series of (Y3-xSmx)Al5O12 phases with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively. The cell parameters (a0) of Sm-doped YAG as a function of activator concentration x were discovered to increase with increasing x. This observation was attributed to the larger size of Sm3+ compared to that of Y3+. On the contrary, the intensity of emission spectra of Sm-doped YAG was found to decrease with increasing x. To understand the boundaries of color mixing and compare colors with different intensity values, we have also established CIE chromaticity diagrams for two series of (Y2.95R0.05)Al5O12 and (Y3-xSmx)Al5O12 phosphors, based on the data extracted from photoluminescent emission and excitation spectra.
Chen, Jhih-Hao, i 陳志豪. "Study on KZnPO4 phosphor doped with different rare earth activators (Eu3+,Tb3+,Sm3+,Dy3+)". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/29990435770308492562.
Pełny tekst źródła崑山科技大學
機械工程研究所
101
The main purpose of this thesis is to develope a new phosphate fluorescent material and to study its characteristics. potassium phosphate zinc (KZnPO4) with hexagonal structure doped with the rare earth ion Eu3+, Tb3+, Sm3+ and Dy3+ as activator was studied in this thesis. Additionally, we investigated the effects of the doping concentration and sintering temperature on the microstructural and optical properties of potassium phosphate zinc (KZnPO4) By X-ray diffraction (XRD), photoluminescence spectrum (PL), and scanning electron microscop (SEM). The results showed that the best doping concentration of the activator Eu3+ is 0.04, the best sintering temperature is 1200 ℃,and the best Package proportion is 1:8. When the Tb3+ activator was doped, the optimum doping concentration is 0.12, the best sintering temperature is 1200 ℃,and the best Package proportion is 1:8. When the Sm3+ activator was doped, the optimum doping concentration is 0.007, the best sintering temperature is 1100 ℃,and the best Package proportion is 1:8. When the Dy3+ activator was doped, the optimum doping concentration is 0.002,the best sintering temperature is 1000 ℃,and the best Package proportion is 1:8.