Gotowa bibliografia na temat „Rare-earth doped phosphors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Rare-earth doped phosphors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Rare-earth doped phosphors"
Xiong, H. H., C. Zhu, X. Zhao, Z. Q. Wang i H. Lin. "Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors". Advances in Materials Science and Engineering 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/819057.
Pełny tekst źródłaSuresh, K., K. V. R. Murthy, Ch Atchyutha Rao i N. V. Poornachandra Rao. "Rare Earth Doped Alkali Earth Sulfide Phosphors for White-Light LEDs". ISRN Condensed Matter Physics 2011 (19.01.2011): 1–3. http://dx.doi.org/10.5402/2011/392917.
Pełny tekst źródłaJung, Jae-Yong. "Luminescent Color-Adjustable Europium and Terbium Co-Doped Strontium Molybdate Phosphors Synthesized at Room Temperature Applied to Flexible Composite for LED Filter". Crystals 12, nr 4 (15.04.2022): 552. http://dx.doi.org/10.3390/cryst12040552.
Pełny tekst źródłaMoine, B., i G. Bizarri. "Rare-earth doped phosphors: oldies or goldies?" Materials Science and Engineering: B 105, nr 1-3 (grudzień 2003): 2–7. http://dx.doi.org/10.1016/j.mseb.2003.08.004.
Pełny tekst źródłaXie, Rong Jun, Mamoru Mitomo i Naoto Hirosaki. "Luminescence Properties of Rare-Earth Doped α-SiAlONs". Key Engineering Materials 317-318 (sierpień 2006): 797–802. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.797.
Pełny tekst źródłaPsuja, P., D. Hreniak i W. Strek. "Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Displays". Journal of Nanomaterials 2007 (2007): 1–7. http://dx.doi.org/10.1155/2007/81350.
Pełny tekst źródłaShmulovich, J., G. W. Berkstresser, C. D. Brandle i A. Valentino. "Single‐Crystal Rare‐Earth‐Doped Yttrium Orthosilicate Phosphors". Journal of The Electrochemical Society 135, nr 12 (1.12.1988): 3141–51. http://dx.doi.org/10.1149/1.2095518.
Pełny tekst źródłaPuppalwar, S. P., S. J. Dhoble i Animesh Kumar. "Photoluminescence in rare earth-doped complex hexafluoride phosphors". Luminescence 27, nr 1 (8.07.2011): 39–44. http://dx.doi.org/10.1002/bio.1322.
Pełny tekst źródłaWang, Xiangfu, Qing Liu, Yanyan Bu, Chun-Sheng Liu, Tao Liu i Xiaohong Yan. "Optical temperature sensing of rare-earth ion doped phosphors". RSC Advances 5, nr 105 (2015): 86219–36. http://dx.doi.org/10.1039/c5ra16986k.
Pełny tekst źródłaTatte, S. P., N. S. Dhoble, G. C. Mishra i S. J. Dhoble. "Synthesis characterization and Luminescence Properties of B2BiMg2V3O12 based phosphors with rare earth activated Dy3+ phosphor for solid state lighting". IOP Conference Series: Materials Science and Engineering 1258, nr 1 (1.10.2022): 012016. http://dx.doi.org/10.1088/1757-899x/1258/1/012016.
Pełny tekst źródłaRozprawy doktorskie na temat "Rare-earth doped phosphors"
Shalav, Avi School of Photovoltaic & Renewable Energy Engineering UNSW. "Rare-earth doped up-converting phosphors for an enhanced silicon solar cell response". Awarded by:University of New South Wales. School of Photovoltaic and Renewable Energy Engineering, 2006. http://handle.unsw.edu.au/1959.4/24184.
Pełny tekst źródłaGao, Yuan. "Design of rare-earth-doped inorganic phosphors and luminescence enhancement by plasmonic effects". Kyoto University, 2020. http://hdl.handle.net/2433/253288.
Pełny tekst źródłaPadhye, P. "Study of tunable optical properties of lanthanide-ion-doped rare earth phosphors and their applications". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2017. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/5892.
Pełny tekst źródłaNishiura, Shotaro. "Preparation and Optical Properties of Rare Earth Doped Ceramic Phosphors for White Light Emitting Diode". Kyoto University, 2013. http://hdl.handle.net/2433/175019.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第17670号
人博第637号
新制||人||153(附属図書館)
24||人博||637(吉田南総合図書館)
30436
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 田部 勢津久, 教授 杉山 雅人, 教授 加藤 立久
学位規則第4条第1項該当
Katayama, Yumiko. "Optical and photo-electric studies on quantum cutting and persistent luminescent phosphors doped with rare-earth and transition-metal ions". Kyoto University, 2014. http://hdl.handle.net/2433/188818.
Pełny tekst źródła0048
新制・課程博士
博士(人間・環境学)
甲第18380号
人博第693号
新制||人||166(附属図書館)
25||人博||693(吉田南総合図書館)
31238
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 田部 勢津久, 教授 加藤 立久, 教授 杉山 雅人, 教授 森本 芳則, 教授 山本 行男
学位規則第4条第1項該当
Ireland, Terry G. "Precipitation techniques and characterisation of rare earth element doped phosphor materials". Thesis, University of Greenwich, 2008. http://gala.gre.ac.uk/6195/.
Pełny tekst źródłaYamane, H., T. Kawano, K. Tatsumi, S. Muto i Y. Fujimichi. "Quantitative determination of site occupancy of multi-rare-earth elements doped into Ca2SnO4 phosphor by electron channeling microanalysis". Elsevier, 2010. http://hdl.handle.net/2237/20789.
Pełny tekst źródłaYamane, H., T. Kawano, K. Tatsumi, Y. Fujimichi i S. Muto. "Site occupancy determination of Eu/Y doped in Ca2SnO4 phosphor by electron channeling microanalysis". Elsevier, 2011. http://hdl.handle.net/2237/20827.
Pełny tekst źródłaLiu, Tzu-Chen, i 劉子晨. "Structural and Luminescent Properties of Multi-functional Rare-earth Doped Phosphors". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/21693165927719900386.
Pełny tekst źródła國立臺灣大學
化學研究所
100
The applications of phosphors according to different excitation sources are versatile due to the utilization of rare earth ions. The tunable energy levels of 5d orbital and the large number of energy levels of 4f orbitals can emit photons with different wavelength. In this thesis, excitation sources from vacuum ultraviolet (VUV), ultraviolet (UV) to visible photons, and electrons are investigated. Emission ranges from UV to visible range and near-infrared (NIR) are also utilized. The third chapter focuses on the synthesis of red-emitting oxynitride phosphor. Intraconfigurational 4f → 4f transitions are designed because of the determined environment for 5d → 4f transitions. The high thermal stability reveals that β–SiAlON is a good candidate for white light-emitting diodes (wLEDs) and plasma display panels (PDP). Pr3+ ions show the possibility of an alternative for red emitting activators. In the fourth chapter, comparison of LED- and FED-used phosphors under electron bombardment is made and it suggests a new class of host lattice should be developed. Evidences from solid-state nuclear magnetic resonance (ssNMR) lead to a different explanation of the incorporation of rare-earth ions into AlN host lattice. A new phosphor composition of AlN doped with Si4+ and Ce3+ ions is synthesized and shows the validity for field emission displays. The fifth chapter includes two proposed quantum cutting (QC) rare-earth combination for enhancing the efficiency of crystalline silicon (c-Si)-based solar cells: (1) adding a sensitizer to transfer the excited energy to the donor with 4f → 4f transitions , and (2) using a broad band donor such as Eu2+ and Ce3+ ions. It is concluded that due to the high energy of phonons required for Ce3+ ions, Eu2+-Yb3+ pairs is a better choice.
LI, YI-SIOU, i 李逸修. "Synthesis and Luminescent Properties of Alkaline Earth Metal Tellurite Phosphors Doped with Rare Earth Elements". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/7xre9h.
Pełny tekst źródła明新科技大學
化學工程與材料科技系碩士班
107
The main lattice material of this study is carbonate,Doping the activation centers: Tb3+, Gd3+, Ce3+, respectively, to prepare red, green, and blue primary color phosphors,The synthesis method is a wet method in a solid-phase synthesis method, and is heated to 900℃and 1400℃at a temperature increase rate of 10℃per minute in a high-temperature furnace, and the calcination is carried out for 10 hours while the calcination is completed. The phosphor powder is finished and tested. The crystal structure is detected by X-ray diffraction (XRD), and the excitation and emission spectra of the phosphor are detected by photoluminescence (PL). Enter the CIE chromaticity coordinate map to know the exact color of the sample. 1.Sr2SiO4 series The sample with added Ce3+ ions has nonlinear optical blue light, and the sample with Tb3+ ions emits green light, while the addition of two rare piles of the earth (Ce3+, Tb3+) emits blue light and also has the characteristics of the above two samples. 2.Ba2SiO4 series The sample with Ce3+ ion added and calcined at 1400 °C has a nonlinear optical blue light. The sample with Tb3+ ion and calcined at 1400 °C emits green light while adding two rare piles of the earth (Ce3+, Tb3+) to emit blue light. With the characteristics of the above two samples, the same calcination temperature is also visible at 1400 °C. 3.Ca2SiO4 series When the calcination temperature is 1400 °C, the luminescence efficiency and crystallinity are better. The sample with Ce3+ has nonlinear optics and emits blue light; the sample with Tb3+ emits green light; while the sample with Ce3+ and Tb3+ remains at the same time. The characteristics of the aforementioned samples showed that the sample to which Gd3+ was added emitted red light.
Książki na temat "Rare-earth doped phosphors"
G, Potter B., Bruce Allan J i American Ceramic Society Meeting, red. Synthesis and application of lanthanide-doped materials. Westerville, Ohio: American Ceramic Society, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Rare-earth doped phosphors"
Mushtaq, Umer, Irfan Ayoub, Nisar Hussain, Vishal Sharma, Hendrik C. Swart i Vijay Kumar. "Luminescence Properties of Rare-Earth-Doped CaO Phosphors". W Advanced Materials for Solid State Lighting, 149–76. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4145-2_6.
Pełny tekst źródłaWithnall, Robert, i Jack Silver. "Physics of Light Emission from Rare Earth-Doped Phosphors". W Handbook of Visual Display Technology, 1567–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14346-0_68.
Pełny tekst źródłaWithnall, Robert, i Jack Silver. "Physics of Light Emission from Rare Earth-Doped Phosphors". W Handbook of Visual Display Technology, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35947-7_68-2.
Pełny tekst źródłaWithnall, Robert, i Jack Silver. "Physics of Light Emission from Rare-Earth Doped Phosphors". W Handbook of Visual Display Technology, 1019–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-79567-4_68.
Pełny tekst źródłaOgugua, Simon N., Robin E. Kroon i Hendrik C. Swart. "Tunable Luminescence from Dy3+ and Pr3+ Doped Mixed Rare-Earth Oxyorthosilicate Phosphors". W Luminescent Nanomaterials, 449–79. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003277385-15.
Pełny tekst źródłaYadav, R. S., Monika Rai i S. B. Rai. "Upconversion Photoluminescence in the Rare Earth Doped Y2O3 Phosphor Materials". W Luminescent Materials in Display and Biomedical Applications, 229–39. First. | Boca Raton : CRC Press, Taylor & Francis Group, [2021]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429025334-12.
Pełny tekst źródłaNoto, Luyanda L., Sefako J. Mofokeng, Fokotsa V. Molefe, Hendrik C. Swart, Angelina S. Tebele i Mokhotjwa S. Dhlamini. "Luminescent dynamics of rare earth–doped CaTiO3 phosphors". W Spectroscopy of Lanthanide Doped Oxide Materials, 57–86. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102935-0.00003-4.
Pełny tekst źródłaSato, M., S. W. Kim, Y. Shimomura, T. Hasegawa, K. Toda i G. Adachi. "Rare Earth-Doped Phosphors for White Light-Emitting Diodes". W Including Actinides, 1–128. Elsevier, 2016. http://dx.doi.org/10.1016/bs.hpcre.2016.03.001.
Pełny tekst źródłaBommareddi, Rami Reddy. "Review of Rare-earth Ion Doped Phosphors for White Light Generation". W New Trends in Physical Science Research Vol. 8, 95–114. Book Publisher International (a part of SCIENCEDOMAIN International), 2022. http://dx.doi.org/10.9734/bpi/ntpsr/v8/3494a.
Pełny tekst źródłaKohale, Ritesh L., Vijay B. Pawade, S. J. Dhoble i Abdul Hakeem Deshmukh. "Rare earth ion doped Mx(PO4)/MXY(PO4) phosphate-based phosphors". W Optical Properties of Phosphate and Pyrophosphate Compounds, 87–108. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823044-2.00001-2.
Pełny tekst źródłaStreszczenia konferencji na temat "Rare-earth doped phosphors"
Jakathamani, S., O. Annalakshmi i M. T. Jose. "Thermoluminescent properties of rare earth doped lithium strontium borate phosphors". W 9TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES (NCTP-2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5031742.
Pełny tekst źródłaPsuja, Piotr, Dariusz Hreniak i Wieslaw Strek. "Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Display Application". W 2006 International Students and Young Scientists Workshop - Photonics and Microsystems. IEEE, 2006. http://dx.doi.org/10.1109/stysw.2006.343669.
Pełny tekst źródłaNanai, Y., Y. Sakamoto i T. Okuno. "Luminescence Properties of Rare Earth-Doped Thiosilicate Phosphors on Silicon Substrate". W 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.ps-7-16.
Pełny tekst źródłaCai, Guanyu, Teresa Delgado, Cyrille Richard i Bruno Viana. "Transition metal and rare earth doped Zn1.3Ga1.4Sn0.3O4 persistent phosphors for anti-counterfeiting applications". W Optical Components and Materials XX, redaktorzy Michel J. Digonnet i Shibin Jiang. SPIE, 2023. http://dx.doi.org/10.1117/12.2649803.
Pełny tekst źródłaPsuja, P., i W. Strek. "Light source with carbon nanotubes field emission cathode and rare-earth doped nanocrystalline phosphors". W NanoScience + Engineering, redaktorzy Elizabeth A. Dobisz i Louay A. Eldada. SPIE, 2007. http://dx.doi.org/10.1117/12.735719.
Pełny tekst źródłaStrojnik, Marija. "Thermoanalytical studies of coprecipitated hydroxides of yttrium and aluminum for preparation of rare-earth doped YAG phosphors". W Second Iberoamerican Meeting on Optics, redaktorzy Daniel Malacara-Hernandez, Sofia E. Acosta-Ortiz, Ramon Rodriguez-Vera, Zacarias Malacara i Arquimedes A. Morales. SPIE, 1996. http://dx.doi.org/10.1117/12.231019.
Pełny tekst źródłaVerma, Akta, i S. K. Sharma. "An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032401.
Pełny tekst źródłaPsuja, P., L. Marciniak, D. Hreniak i W. Strek. "Fabrication and optical properties of selected coreshell structures with nanocrystalline rare-earth doped phosphors coated with SiO2 submicron particles". W 2007 International Students and Young Scientists Workshop on "Photonics and Microsystems". IEEE, 2007. http://dx.doi.org/10.1109/stysw.2007.4559122.
Pełny tekst źródłaJohnson, J. A., R. Weber, A. I. Kolesnikov i S. Schweizer. "Glass Ceramics for High-Resolution Imaging". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66205.
Pełny tekst źródłaDevia-Cruz, Luis Felipe, Mathew A. Duarte, Corey L. Hardin, Javier E. Garay, Yasuhiro Kodera i Elias Penilla. "Intense photoluminescence and optical gain in rare-earth doped Polycrystalline Sapphire: a new bulk media for high-power phosphors and high-energy lasers". W Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XII, redaktorzy Shizhuo Yin i Ruyan Guo. SPIE, 2018. http://dx.doi.org/10.1117/12.2322108.
Pełny tekst źródła