Artykuły w czasopismach na temat „Raman scattering”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Raman scattering.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Raman scattering”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Simon, Albert. "Raman scattering". Canadian Journal of Physics 64, nr 8 (1.08.1986): 956–60. http://dx.doi.org/10.1139/p86-164.

Pełny tekst źródła
Streszczenie:
Observations of Raman scattered light from inhomogeneous laser-produced plasma have shown characteristics quite different from the simple predictions for the stimulated Raman scattering instability. An alternative explanation in terms of enhanced scattering, produced by bursts of hot electrons arising at the quarter-critical or critical surface, is described. Comparison is made between the predictions of this theory and four experiments.
Style APA, Harvard, Vancouver, ISO itp.
2

Shen, Chencheng, Xianglong Cai, Youbao Sang, Tiancheng Zheng, Zhonghui Li, Dong Liu, Wanfa Liu i Jingwei Guo. "Investigation of multispectral SF6 stimulated Raman scattering laser". Chinese Optics Letters 18, nr 5 (2020): 051402. http://dx.doi.org/10.3788/col202018.051402.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yashchuk, V. P. "Stimulated Raman scattering of Rhodamine 6G in polymer samples enclosed in scattering cover". Functional materials 22, nr 1 (20.04.2015): 57–60. http://dx.doi.org/10.15407/fm22.01.057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kusakabe, K., H. Kuroe, A. Oosawa, T. Sekine, M. Fujisawa i H. Tanaka. "Raman scattering of". Journal of Magnetism and Magnetic Materials 310, nr 2 (marzec 2007): 1365–67. http://dx.doi.org/10.1016/j.jmmm.2006.10.388.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kuroe, H., A. Oosawa, T. Sekine, Y. Nishiwaki i T. Kato. "Raman scattering in". Journal of Magnetism and Magnetic Materials 310, nr 2 (marzec 2007): 1303–5. http://dx.doi.org/10.1016/j.jmmm.2006.10.475.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mitch, Michael G., i Jeffrey S. Lannin. "Raman scattering inK4C60andRb4C60fullerenes". Physical Review B 51, nr 10 (1.03.1995): 6784–87. http://dx.doi.org/10.1103/physrevb.51.6784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li i Zhengjun Zhang. "The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering". International Journal of Spectroscopy 2012 (19.12.2012): 1–7. http://dx.doi.org/10.1155/2012/350684.

Pełny tekst źródła
Streszczenie:
Surface-enhanced Raman scattering (SERS) was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.
Style APA, Harvard, Vancouver, ISO itp.
8

Cui, Sishan, Shuo Zhang i Shuhua Yue. "Raman Spectroscopy and Imaging for Cancer Diagnosis". Journal of Healthcare Engineering 2018 (7.06.2018): 1–11. http://dx.doi.org/10.1155/2018/8619342.

Pełny tekst źródła
Streszczenie:
Raman scattering has long been used to analyze chemical compositions in biological systems. Owing to its high chemical specificity and noninvasive detection capability, Raman scattering has been widely employed in cancer screening, diagnosis, and intraoperative surgical guidance in the past ten years. In order to overcome the weak signal of spontaneous Raman scattering, coherent Raman scattering and surface-enhanced Raman scattering have been developed and recently applied in the field of cancer research. This review focuses on innovative studies of the use of Raman scattering in cancer diagnosis and their potential to transition from bench to bedside.
Style APA, Harvard, Vancouver, ISO itp.
9

Adams, Mark A., Stewart F. Parker, Felix Fernandez-Alonso, David J. Cutler, Christopher Hodges i Andrew King. "Simultaneous Neutron Scattering and Raman Scattering". Applied Spectroscopy 63, nr 7 (lipiec 2009): 727–32. http://dx.doi.org/10.1366/000370209788701107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wu, Yu Deng, i Guang Jun Ren. "Study of Enhanced Surface Raman Scattering on Nano-Particle in Terahertz Range". Advanced Materials Research 977 (czerwiec 2014): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amr.977.108.

Pełny tekst źródła
Streszczenie:
Researched the surface-enhanced Raman scattering on nanoparticle in terahertz range, and proved the existence of the same phenomenon-Raman enhancements in the terahertz band. By studying the electromagnetic enhancement principle of surface-enhanced Raman scattering, proposed to using finite difference time-domain to simulate the surface-enhanced Raman scattering of nanoparticles in the terahertz irradiated. Simulation results show that the FDTD method can effectively simulate the scattering of nanoparticles in terahertz band, resulting in surface-enhanced Raman scattering from the visible and infrared bands extended to the terahertz band, and the result provides basis for terahertz waves and surface-enhanced Raman scattering the combined application.
Style APA, Harvard, Vancouver, ISO itp.
11

Tukhvatullin, F. H., U. N. Tashkenbaev, А. Jumabaev, H. Hushvaktov, А. Absanov, B. Hudoyberdiev i B. Kuyliev. "Raman Scattering Spectra of Liquid Bromoform and Its Solutions". Ukrainian Journal of Physics 60, nr 9 (wrzesień 2015): 876–79. http://dx.doi.org/10.15407/ujpe60.09.0876.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Li, Ying-Sing, i Yu Wang. "Chemically Prepared Silver/Alumina Substrate for Surface-Enhanced Raman Scattering". Applied Spectroscopy 46, nr 1 (styczeń 1992): 142–46. http://dx.doi.org/10.1366/0003702924444506.

Pełny tekst źródła
Streszczenie:
A new silver-coated alumina/glass substrate was prepared by a chemical reduction method at room temperature. The substrate was found to exhibit strong surface-enhanced scatterings for crystal violet (CV), p-nitrophenol (PNP), p-nitrobenzoic acid (PNBA), and pyrene. Optimization of silver deposition time was achieved by using CV as an analyte. Lower limits of detection were determined for these compounds to demonstrate the analytical potential of the new substrate. Enhancement factors of ∼106 and ∼107 were determined from comparisons of the surface-enhanced Raman scattering (SERS) intensities of mono-molecular layers with the normal Raman intensities for PNP and PNBS, respectively. Three different methods of sample applications were adapted and tested. The reusability of the substrates was tested by recording the surface-enhanced resonance Raman scattering (SERRS) spectra of CV at different conditions.
Style APA, Harvard, Vancouver, ISO itp.
13

Minamimoto, Hiro, Fumiya Kato, Fumika Nagasawa, Mai Takase i Kei Murakoshi. "Electrochemical control of strong coupling states between localized surface plasmons and molecule excitons for Raman enhancement". Faraday Discussions 205 (2017): 261–69. http://dx.doi.org/10.1039/c7fd00126f.

Pełny tekst źródła
Streszczenie:
The intensity of Raman scattering from dye molecules strongly coupled with localized surface plasmons of metal nanostructures was controlled by the electrochemical potential. Through in situ electrochemical extinction and surface-enhanced Raman scattering measurements, it is found that the redox state of the molecules affects the coupling strength, leading to the change in the intensity of the Raman scattering. Analysis of the Raman spectrum provides information on the molecules in strong coupling states showing effective enhancement of Raman scattering.
Style APA, Harvard, Vancouver, ISO itp.
14

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li i Zhengjun Zhang. "The Regulation of Surface-Enhanced Raman Scattering Sensitivity of Silver Nanorods by Silicon Sections". Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/128254.

Pełny tekst źródła
Streszczenie:
Vertically aligned silver nanorods were good substrates for surface-enhanced Raman scattering. The surface-enhanced Raman scattering sensitivity of nanorods can be regulated through the method that the silver nanorod is divided into four uniform silver sections using five uniform silicon sections. And the length of silicon sections is the key factor in regulating the surface-enhanced Raman scattering sensitivity. In the regulation, the best surface-enhanced Raman scattering performance is about 4 times as large as the worst performance. The study provides an effective way to regulate the surface-enhanced Raman scattering sensitivity of silver nanorods and its possible explanation about mechanism.
Style APA, Harvard, Vancouver, ISO itp.
15

Попов, В. Г., В. Г. Криштоп, C. А. Тарелкин i И. И. Корель. "Комбинационное рассеяние света квазиоднофотонных импульсов в оптоволокне с накачкой". Физика и техника полупроводников 54, nr 8 (2020): 812. http://dx.doi.org/10.21883/ftp.2020.08.49631.07.

Pełny tekst źródła
Streszczenie:
Processes of Raman scattering of quasi-single-photon pulses in a single-mode optical fiber with pumping are theoretically considered. The peculiarity of the scattering is that the pumping creates non-equilibrium molecular vibrations, which significantly increases the probability of Raman scattering in the optical fiber. Non-equilibrium vibrations are expected to be when the stimulated Raman scattering takes place for the pump pulse. As a result, the length of the optical fiber has been estimated where the probability of the Raman scattering is increased
Style APA, Harvard, Vancouver, ISO itp.
16

Горелик, В. С., Dongxue Bi, Ю. П. Войнов, А. И. Водчиц, В. А. Орлович i А. И. Савельева. "Спонтанное и вынужденное комбинационное рассеяние света в протиевой и дейтериевой воде -=SUP=-*-=/SUP=-". Журнал технической физики 126, nr 6 (2019): 765. http://dx.doi.org/10.21883/os.2019.06.47771.51-19.

Pełny tekst źródła
Streszczenie:
Comparison of Raman scattering spectra for different samples of protium and deuterium water has been done. Registration of spectra was held with the help of fiber optics technique and BWS465-785H small sized spectrometer. For excitation of spontaneous Raman scattering spectra the continuously working laser (λ=785 nm) has been used. The essential differences of low frequency Raman scattering spectra for different water samples have been observed. Such differences have been explained by the presence of structural defects and imperfections in analyzed water. Stimulated Raman scattering spectra in protium and deuterium water have been observed with excitation by picosecond laser pulses with wavelength 532 nm. Low frequency Raman satellites in Stimulated Raman scattering spectra have been recorded, related to clusters of several water molecules.
Style APA, Harvard, Vancouver, ISO itp.
17

Egawa, Mariko. "Raman microscopy for skin evaluation". Analyst 146, nr 4 (2021): 1142–50. http://dx.doi.org/10.1039/d0an02039g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Hastings, Simon P., Pattanawit Swanglap, Zhaoxia Qian, Ying Fang, So-Jung Park, Stephan Link, Nader Engheta i Zahra Fakhraai. "Quadrupole-Enhanced Raman Scattering". ACS Nano 8, nr 9 (26.08.2014): 9025–34. http://dx.doi.org/10.1021/nn5022346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kondow, Masahiko, Shigekazu Minagawa i Shin Satoh. "Raman scattering from AlGaInP". Applied Physics Letters 51, nr 24 (14.12.1987): 2001–3. http://dx.doi.org/10.1063/1.98273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Bailo, Elena, i Volker Deckert. "Tip-enhanced Raman scattering". Chemical Society Reviews 37, nr 5 (2008): 921. http://dx.doi.org/10.1039/b705967c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Grodecki, K., K. Murawski, K. Michalczewski, B. Budner i P. Martyniuk. "Raman scattering of InAsSb". AIP Advances 9, nr 2 (luty 2019): 025107. http://dx.doi.org/10.1063/1.5081775.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kneipp, Katrin. "Surface-enhanced Raman scattering". Physics Today 60, nr 11 (listopad 2007): 40–46. http://dx.doi.org/10.1063/1.2812122.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Çulha, Mustafa, Nickolay Lavrik, Brian M. Cullum i Simion Astilean. "Surface-Enhanced Raman Scattering". Journal of Nanotechnology 2012 (2012): 1–2. http://dx.doi.org/10.1155/2012/413156.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Atanassova, Y. K., V. G. Hadjiev, P. Karen i A. Kjekshus. "Raman scattering fromYBa2Fe3O8+δ". Physical Review B 50, nr 1 (1.07.1994): 586–89. http://dx.doi.org/10.1103/physrevb.50.586.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Goryainov, S. V., A. Yu Likhacheva i N. N. Ovsyuk. "Raman Scattering in Lonsdaleite". Journal of Experimental and Theoretical Physics 127, nr 1 (lipiec 2018): 20–24. http://dx.doi.org/10.1134/s1063776118070051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Schilbe, Peter. "Raman scattering in VO2". Physica B: Condensed Matter 316-317 (maj 2002): 600–602. http://dx.doi.org/10.1016/s0921-4526(02)00584-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Rho, H., S. L. Cooper, S. Nakatsuji, H. Fukazawa i Y. Maeno. "Raman scattering studies of". Physica B: Condensed Matter 359-361 (kwiecień 2005): 1270–72. http://dx.doi.org/10.1016/j.physb.2005.01.353.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Scagliotti, M., M. Jouanne, M. Balkanski, G. Ouvrard i G. Benedek. "Raman scattering in antiferromagneticFePS3andFePSe3crystals". Physical Review B 35, nr 13 (1.05.1987): 7097–104. http://dx.doi.org/10.1103/physrevb.35.7097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Udagawa, Masayuki, Hiroaki Aoki, Norio Ogita, Osamu Fujita, Akio Sohma, Atsuyuki Ogihara i Jun Akimitsu. "Raman Scattering of CuGeO3". Journal of the Physical Society of Japan 63, nr 11 (15.11.1994): 4060–64. http://dx.doi.org/10.1143/jpsj.63.4060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hasegawa, T., Y. Takasu, T. Kondou, N. Ogita, M. Udagawa, T. Yamaguchi, T. Watanabe, Y. Nemoto i T. Goto. "Raman scattering on La3Pd20X6". Journal of Magnetism and Magnetic Materials 310, nr 2 (marzec 2007): 984–86. http://dx.doi.org/10.1016/j.jmmm.2006.10.407.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Ogita, N., Y. Tsunezumi, H. Aoki, M. Udagawa, O. Fujita, A. Ogihara i J. Akimitsu. "Raman scattering of CuGeO3". Physica B: Condensed Matter 219-220 (kwiecień 1996): 107–9. http://dx.doi.org/10.1016/0921-4526(95)00665-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Boerio, F. J. "Surface-enhanced raman scattering". Thin Solid Films 181, nr 1-2 (grudzień 1989): 423–33. http://dx.doi.org/10.1016/0040-6090(89)90511-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Williams, G. M., P. C. Becker, J. G. Conway, N. Edelstein, M. M. Abraham i L. A. Boatner. "Electronic Raman scattering in". Journal of the Less Common Metals 126 (grudzień 1986): 302. http://dx.doi.org/10.1016/0022-5088(86)90307-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Brolo, Alexandre G., Erin Arctander, Reuven Gordon, Brian Leathem i Karen L. Kavanagh. "Nanohole-Enhanced Raman Scattering". Nano Letters 4, nr 10 (październik 2004): 2015–18. http://dx.doi.org/10.1021/nl048818w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Campion, Alan, i Patanjali Kambhampati. "Surface-enhanced Raman scattering". Chemical Society Reviews 27, nr 4 (1998): 241. http://dx.doi.org/10.1039/a827241z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

FUTAMATA, Masayuki. "Surface Enhanced Raman Scattering". Hyomen Kagaku 33, nr 4 (2012): 216–22. http://dx.doi.org/10.1380/jsssj.33.216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Bahns, John T., Funing Yan, Dengli Qiu, Rong Wang i Liaohai Chen. "Hole-Enhanced Raman Scattering". Applied Spectroscopy 60, nr 9 (wrzesień 2006): 989–93. http://dx.doi.org/10.1366/000370206778397326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kneipp, Katrin, i Harald Kneipp. "Single Molecule Raman Scattering". Applied Spectroscopy 60, nr 12 (grudzień 2006): 322A—334A. http://dx.doi.org/10.1366/000370206779321418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bando, H., T. Hasegawa, N. Ogita, M. Udagawa i F. Iga. "Raman Scattering of YB6". Journal of the Physical Society of Japan 80, Suppl.A (2.01.2011): SA053. http://dx.doi.org/10.1143/jpsjs.80sa.sa053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mitch, Michael G., i Jeffrey S. Lannin. "Intermolecular Raman scattering inA3C60". Physical Review B 48, nr 21 (1.12.1993): 16192–95. http://dx.doi.org/10.1103/physrevb.48.16192.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Yoshida, M., S. Gotoh, T. Takata, N. Koshizuka i S. Tanaka. "Phonon Raman scattering ofNbBa2Cu3OyandNd1.6Ba1.4Cu3Oy". Physical Review B 41, nr 16 (1.06.1990): 11689–92. http://dx.doi.org/10.1103/physrevb.41.11689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Menyuk, Curtis R., i Thomas I. Seidman. "Transient Stimulated Raman Scattering". SIAM Journal on Mathematical Analysis 23, nr 2 (marzec 1992): 346–63. http://dx.doi.org/10.1137/0523018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Lo, Shui-Yin, i Tu-Nan Ruan. "Quantum Stimulated Raman Scattering". Communications in Theoretical Physics 18, nr 4 (grudzień 1992): 457–64. http://dx.doi.org/10.1088/0253-6102/18/4/457.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Fisher, D. L., i T. Tajima. "Enhanced Raman forward scattering". Physical Review E 53, nr 2 (1.02.1996): 1844–51. http://dx.doi.org/10.1103/physreve.53.1844.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hasegawa, T., Y. Takasu, N. Ogita, M. Udagawa, J. Yamaura, Y. Nagao i Z. Hiroi. "Raman scattering on KOs2O6". Journal of Physics: Conference Series 92 (1.12.2007): 012124. http://dx.doi.org/10.1088/1742-6596/92/1/012124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Yoshikawa, M., N. Nagai, M. Matsuki, H. Fukuda, G. Katagiri, H. Ishida, A. Ishitani i I. Nagai. "Raman scattering fromsp2carbon clusters". Physical Review B 46, nr 11 (15.09.1992): 7169–74. http://dx.doi.org/10.1103/physrevb.46.7169.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Otto, A., I. Mrozek, H. Grabhorn i W. Akemann. "Surface-enhanced Raman scattering". Journal of Physics: Condensed Matter 4, nr 5 (3.02.1992): 1143–212. http://dx.doi.org/10.1088/0953-8984/4/5/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

De Andrés, A., i C. Prieto. "Raman scattering in TlH2PO4". Phase Transitions 14, nr 1-4 (luty 1989): 3–9. http://dx.doi.org/10.1080/01411598908208075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hayashi, S., i K. Yamamoto. "Raman scattering from microcrystals". Phase Transitions 24-26, nr 2 (sierpień 1990): 641–60. http://dx.doi.org/10.1080/01411599008210247.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gachko, G. A., V. K. Zybel't, L. N. Kivach, S. A. Maskevich i S. G. Podtynchenko. "Automated Raman scattering spectrometer". Journal of Applied Spectroscopy 49, nr 4 (październik 1988): 1084–86. http://dx.doi.org/10.1007/bf00657235.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii