Gotowa bibliografia na temat „Raman fiber lasers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Raman fiber lasers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Raman fiber lasers"
Li, Ziyan, Wenxi Pei, Hao Li, Wei Huang, Xuanxi Li, Zefeng Wang i Jinbao Chen. "D2-Filled Hollow-Core Fiber Gas Raman Laser at 2.15 μm". Photonics 9, nr 10 (11.10.2022): 753. http://dx.doi.org/10.3390/photonics9100753.
Pełny tekst źródłaPei, Wenxi, Hao Li, Wei Huang, Meng Wang i Zefeng Wang. "All-Fiber Gas Raman Laser by D2-Filled Hollow-Core Photonic Crystal Fibers". Photonics 8, nr 9 (9.09.2021): 382. http://dx.doi.org/10.3390/photonics8090382.
Pełny tekst źródłaSirleto, Luigi. "Fiber Raman Amplifiers and Fiber Raman Lasers". Micromachines 11, nr 12 (27.11.2020): 1044. http://dx.doi.org/10.3390/mi11121044.
Pełny tekst źródłaSupradeepa, V. R., Yan Feng i Jeffrey W. Nicholson. "Raman fiber lasers". Journal of Optics 19, nr 2 (4.01.2017): 023001. http://dx.doi.org/10.1088/2040-8986/19/2/023001.
Pełny tekst źródłaSirleto, Luigi, i Maria Antonietta Ferrara. "Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman Scattering: A Review". Micromachines 11, nr 3 (26.02.2020): 247. http://dx.doi.org/10.3390/mi11030247.
Pełny tekst źródłaLi, Jun, Hao Li i Zefeng Wang. "Application of Hollow-Core Photonic Crystal Fibers in Gas Raman Lasers Operating at 1.7 μm". Crystals 11, nr 2 (27.01.2021): 121. http://dx.doi.org/10.3390/cryst11020121.
Pełny tekst źródłaHu, Chunhua, i Ping Sun. "Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber". Photonics 10, nr 1 (28.12.2022): 33. http://dx.doi.org/10.3390/photonics10010033.
Pełny tekst źródłaPei, Wenxi, Hao Li, Wei Huang, Meng Wang i Zefeng Wang. "All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers". Molecules 26, nr 15 (28.07.2021): 4561. http://dx.doi.org/10.3390/molecules26154561.
Pełny tekst źródłaIsmail, Aiman, Hazwani Mohammad Helmi, Md Zaini Jamaludin, Fairuz Abdullah, Abdul Hadi Sulaiman i Ker Pin Jern. "Erbium-Doped Fiber Amplification Assisted Multi-Wavelength Brillouin-Raman Fiber Laser". International Journal of Engineering & Technology 7, nr 4.35 (30.11.2018): 854. http://dx.doi.org/10.14419/ijet.v7i4.35.26269.
Pełny tekst źródłaChen, Yizhu, Chenchen Fan, Tianfu Yao, Hu Xiao, Jiangming Xu, Jinyong Leng, Pu Zhou i in. "Comparison of multimode GRIN-fiber Raman lasers with FBG and random DFB cavity". Journal of Physics: Conference Series 2249, nr 1 (1.04.2022): 012015. http://dx.doi.org/10.1088/1742-6596/2249/1/012015.
Pełny tekst źródłaRozprawy doktorskie na temat "Raman fiber lasers"
Gapontsev, Denis Valentinovitch. "Fiber Raman lasers and amplifiers and their applications". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322403.
Pełny tekst źródłaBerberoglu, Halil. "Numerical Simulations On Stimulated Raman Scattering For Fiber Raman Amplifiers And Lasers Using Spectral Methods". Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608986/index.pdf.
Pełny tekst źródłaknowledge in this thesis. Numerical results demonstrate that in a few iterations great accuracy is obtained using fewer grid points.
Zhu, Gongwen. "Q-switched and Mode-locked Mid-IR Fiber Lasers". Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/578593.
Pełny tekst źródłaEl, bassri Farid. "Sources lasers déclenchées nanosecondes : Applications à la spectroscopie Raman cohérente sous champ électrique". Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0060/document.
Pełny tekst źródłaThanks to their compactness, robustness and low cost, pulsed nanosecond microlasers are particularly attractive sources for different detection and analysis systems, particularly flow cytometers or devices for CARS (Coherent Anti Raman Stokes Scattering) spectroscopy. However, these applications require reduced time jitter and increased repetition rate. The first part of this thesis proposes novel solutions to achieve the required performance from passively Q-switched microlasers, which are based on an hybrid coupled-cavity and intensitymodulated pump wave. A repetition rate greater than 30 kHz with jitter remaining lower than 200 ns is reached. Pulsed fiber microlasers operating by gain switching are also studied, showing that pulses with low timing jitter, at a repetition rate of more than 2 MHz can be obtained. The last part is devoted to the development and the implementation of a new system of CARS spectroscopy assisted by a high-voltage electrical stimulation. This device, based on an amplified microlaser, allows to substract the non-resonant background noise in the measurements. Thus, a fine spectroscopic analysis of the response of different environments of interest in continuous or pulsed field can be achieved. It may lead to a new method for field microdosimetry. Various applications, including granulometry at the micro or nanometric scale and the identification of markers for biology, are shown
Nishizawa, Norihiko, Youta Ito i Toshio Goto. "0.78-0.90-μm wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber". IEEE, 2002. http://hdl.handle.net/2237/6769.
Pełny tekst źródłaBenoit, Aurélien. "Sources laser fibrées hybrides de haute puissance : Amplification et conversion de fréquences". Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0024/document.
Pełny tekst źródłaHigh-power fiber lasers adress an increasing number of applications since ten years. In the frame of a CIFRE contract between the company Eolite Systems and Xlim (joint laboratory between CNRS and the University of Limoges), the goal of this PhD project was to develop the technological blocs to achieve all-fibre high-power lasers emiting out of the conventional spectral band covered by existing lasers.Modal instabilities in large mode area (LMA) fibers are currently the main limitation of the fiber lasers power scaling. We have experimentally demonstrated the relevance of inner cladding aperiodic structures to efficiently delocalize higher order modes outside the gain region. A systematic study of passive fibers based on such structures has shown the single propagation of the fundamental mode over a wide wavelength range from 1 to 2 µm for dimension of core up to 85 µm. This effective mode delocalization even extends up to a core dimension of 140 µm at a 2 µm wavelength.The combination of high power picosecond fiber laser with an average power of 22.7 W and a hydrogen-filled inhibited coupling Kagome fiber allowed us to generate two Raman combs over five frequency octaves from 321 nm to 12.5 µm. These two combs are controlled by the laser pump polarization and generated an average power of 10.1 W displayed over 70 laser lines for circular pump polarization and 8.6 W over 30 lines for linear polarization. Some laser lines within these combs have been generated for the first time from high-power fiber source in the mid-infrared range. We have also demonstrated the generation of high-power line by optimizing the first vibrational Stokes at 1.8 µm with an average power of 9.3 W and a quantum efficiency of the frequency conversion stage close to 80%
Louot, Christophe. "Sources de supercontinuum pour la microspectroscopie Raman cohérente large-bande". Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0015/document.
Pełny tekst źródłaCoherent Raman microspectroscopy (CARS) is an optical method used to identify molecular bonds in a sample in order to analyze and determine its complete composition. It requires the simultaneous excitation of the sample by two waves (the pump wave and the Stokes wave) in order to induce resonant vibration of the bond to be detected. For multiple bonds analysis (broadband coherent Raman microspectroscopy our Multiplex-CARS), the monochromatic Stokes wave must be replaced by a broadband beam (supercontinuum). The aim of this thesis was to design supercontinuum sources optimized for Multiplex-CARS application, in particular in terms of spectral bandwidth and spectral power density. Supercontinuum generation was investigated in three different optical fibers: (i) a microstructured single mode fiber with a large Yb doped core in which the input beam was re-amplified all along its propagation; (ii) a conventional singlemode fiber pumped in the normal dispersion regime in which spectral broadening was achieved by means of Raman gain saturation; (iii) a conventional graded-index multimode fiber in which the beam spectrally broadened by Raman gain saturation at very high power also experienced spatial self-cleaning by Kerr effect, resulting in a high brillance output beam with an,intensity profile close to that of the fundamental mode. A complete spectrotemporal study is achieved for each of these three sources
Nishizawa, Norihiko, i Toshio Goto. "Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers". IEEE, 2001. http://hdl.handle.net/2237/6864.
Pełny tekst źródłaNishizawa, Norihiko, i Toshio Goto. "Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers". IEEE, 1999. http://hdl.handle.net/2237/6767.
Pełny tekst źródłaNishizawa, Norihiko, Ryuji Okamura i Toshio Goto. "Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers". IEEE, 1999. http://hdl.handle.net/2237/6771.
Pełny tekst źródłaKsiążki na temat "Raman fiber lasers"
Feng, Yan, red. Raman Fiber Lasers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1.
Pełny tekst źródłaZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Znajdź pełny tekst źródłaFeng, Yan. Raman Fiber Lasers. Springer, 2017.
Znajdź pełny tekst źródłaFeng, Yan. Raman Fiber Lasers. Springer, 2018.
Znajdź pełny tekst źródłaDixon, Nicholas Michael. Raman microscopy of laser damaged dielectric films and optical fibre inclusions. 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Raman fiber lasers"
Feng, Yan, i Lei Zhang. "High Power Raman Fiber Lasers". W Raman Fiber Lasers, 1–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_1.
Pełny tekst źródłaSupradeepa, V. R., i Jeffrey W. Nicholson. "Cascaded Raman Fiber Lasers". W Raman Fiber Lasers, 35–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_2.
Pełny tekst źródłaFortin, Vincent, Martin Bernier i Réal Vallée. "Mid-Infrared Raman Fiber Lasers". W Raman Fiber Lasers, 67–116. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_3.
Pełny tekst źródłaIslam, Mohammed N. "Infrared Super-continuum Light Sources and Their Applications". W Raman Fiber Lasers, 117–203. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_4.
Pełny tekst źródłaQin, Guanshi. "Specialty Optical Fibers for Raman Lasers". W Raman Fiber Lasers, 205–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_5.
Pełny tekst źródłaWestbrook, Paul S., Kazi S. Abedin i Tristan Kremp. "Distributed Feedback Raman and Brillouin Fiber Lasers". W Raman Fiber Lasers, 235–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_6.
Pełny tekst źródłaBabin, Sergey A., Sergey I. Kablukov, Ekaterina A. Zlobina, Evgeniy V. Podivilov, Sofia R. Abdullina, Ivan A. Lobach, Alexey G. Kuznetsov, Ilya D. Vatnik, Dmitry V. Churkin i Sergei K. Turitsyn. "Random Distributed Feedback Raman Fiber Lasers". W Raman Fiber Lasers, 273–354. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_7.
Pełny tekst źródłaWestbrook, Paul S., Kazi S. Abedin i Tristan Kremp. "Erratum to: Distributed Feedback Raman and Brillouin Fiber Lasers". W Raman Fiber Lasers, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65277-1_8.
Pełny tekst źródłaLin, Chinlon. "Fiber Raman lasers". W Topics in Applied Physics, 279–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55571-4_7.
Pełny tekst źródłaLin, Chinlon. "Fiber Raman Lasers". W Topics in Applied Physics, 279–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-10635-8_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Raman fiber lasers"
Islam, Mohammed N., L. F. Mollenauer, R. H. Stolen, J. R. Simpson i H. T. Shang. "Amplifier/compressor fiber Raman lasers". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.tuv3.
Pełny tekst źródłaDesurvire, E., B. Y. Kim, K. A. Fesler i H. J. Shaw. "Reentrant Fiber Raman Gyroscope". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.thu5.
Pełny tekst źródłaWu, Tsai-wei, i Herbert G. Winful. "Raman Fiber Laser Arrays". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.jthe23.
Pełny tekst źródłaTaniguchi, Atsushi, Tetsuro Kuwayama, Akira Shirakawa, Mitsuru Musha, Ken-ichi Ueda i Mahendra Prabhu. "Raman fiber laser-pumped 2-μm fiber laser". W International Conference on Lasers, Applications, and Technologies 2002 Advanced Lasers and Systems, redaktorzy Guenter Huber, Ivan A. Scherbakov i Vladislav Y. Panchenko. SPIE, 2003. http://dx.doi.org/10.1117/12.517936.
Pełny tekst źródłaGladyshev, A. V., A. F. Kosolapov, M. S. Astapovich, A. N. Kolyadin, A. D. Pryamikov, M. M. Khudyakov, M. E. Likhachev i I. A. Bufetov. "Revolver Hollow-Core Fibers and Raman Fiber Lasers". W Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.m2j.7.
Pełny tekst źródłaStolen, Roger. "Raman Fiber Lasers and Amplifiers". W Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.fth3h.1.
Pełny tekst źródłaGrubb, Stephen G. "Cascaded Raman Fiber Lasers and Amplifiers". W Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmc.1.
Pełny tekst źródłaHeadley III, Clifford, Jean-Christophe Bouteiller, Marc Mermelstein, Khush Brar i Christopher Horn. "Raman fiber lasers as pumps for Raman amplification". W ITCom 2002: The Convergence of Information Technologies and Communications, redaktorzy Achyut K. Dutta, Abdul Ahad S. Awwal, Niloy K. Dutta i Katsunari Okamoto. SPIE, 2002. http://dx.doi.org/10.1117/12.475529.
Pełny tekst źródłaKafka, J. D., D. F. Head i T. Baer. "Dispersion Compensated Fiber Raman Oscillator". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 1986. http://dx.doi.org/10.1364/cleo.1986.thu6.
Pełny tekst źródłaShaw, L. B., P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal i P. A. Thielen. "Raman Amplification in As-Se Fiber". W Advanced Solid State Lasers. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/assl.2002.ma5.
Pełny tekst źródłaRaporty organizacyjne na temat "Raman fiber lasers"
Ziegler, K. E. Fiber-Optic Laser Raman Spectroscopy Sensor. Office of Scientific and Technical Information (OSTI), wrzesień 2003. http://dx.doi.org/10.2172/815181.
Pełny tekst źródłaMildren, Richard. High Average Power Raman Conversion in Diamond: 'Eyesafe' Output and Fiber Laser Conversion. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2015. http://dx.doi.org/10.21236/ada626805.
Pełny tekst źródła