Gotowa bibliografia na temat „Raman”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Raman”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Raman"

1

Sinha, Rajeev K. "An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy". Instruments and Experimental Techniques 64, nr 6 (listopad 2021): 840–47. http://dx.doi.org/10.1134/s002044122106018x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li i Zhengjun Zhang. "The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering". International Journal of Spectroscopy 2012 (19.12.2012): 1–7. http://dx.doi.org/10.1155/2012/350684.

Pełny tekst źródła
Streszczenie:
Surface-enhanced Raman scattering (SERS) was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.
Style APA, Harvard, Vancouver, ISO itp.
3

Dubessy, Jean. "Preface: Geo-Raman X". European Journal of Mineralogy 25, nr 5 (16.01.2014): 713. http://dx.doi.org/10.1127/0935-1221/2013/0025-2359.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gu, Mingqiang, i James M. Rondinelli. "Coupled Raman-Raman modes in the ionic Raman scattering process". Applied Physics Letters 113, nr 11 (10.09.2018): 112903. http://dx.doi.org/10.1063/1.5048037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bramhayya, Chakali. "BRICS in the Global Order: Global South View Book Review: Locating BRICS in the Global Order: Perspectives from the Global South. (2023). Ed. by Rajan Kumar, Meeta Keswani Mehra, G. Venkat Raman, Meenakshi Sundriyal. Routledge India. 258 p." Governance and Politics 2, nr 1 (28.04.2023): 84–89. http://dx.doi.org/10.24833/2782-7062-2023-2-1-84-89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Masters, Barry R. "CV Raman and the Raman Effect". Optics and Photonics News 20, nr 2 (1.02.2009): 26. http://dx.doi.org/10.1364/opn.20.2.000026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Masters, Barry R. "CV Raman and the Raman Effect". Optics and Photonics News 20, nr 3 (1.03.2009): 40. http://dx.doi.org/10.1364/opn.20.3.000040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Frey, Gitti L., Reshef Tenne, Manyalibo J. Matthews, M. S. Dresselhaus i G. Dresselhaus. "Raman and resonance Raman investigation ofMoS2nanoparticles". Physical Review B 60, nr 4 (15.07.1999): 2883–92. http://dx.doi.org/10.1103/physrevb.60.2883.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Carey, Paul R. "Resonance Raman labels and Raman labels". Journal of Raman Spectroscopy 29, nr 10-11 (październik 1998): 861–68. http://dx.doi.org/10.1002/(sici)1097-4555(199810/11)29:10/11<861::aid-jrs323>3.0.co;2-b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Vermeulen, N., C. Debaes i H. Thienpont. "Coherent anti-Stokes Raman scattering in Raman lasers and Raman wavelength converters". Laser & Photonics Reviews 4, nr 5 (7.06.2010): 656–70. http://dx.doi.org/10.1002/lpor.200910030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Raman"

1

Ali, Momenpour. "Raman Biosensors". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36468.

Pełny tekst źródła
Streszczenie:
This PhD thesis focuses on improving the limit of detection (LOD) of Raman biosensors by using surface enhanced Raman scattering (SERS) and/or hollow core photonic crystal fibers (HC-PCF), in conjunction with statistical methods. Raman spectroscopy is a multivariate phenomenon that requires statistical analysis to identify the relationship between recorded spectra and the property of interest. The objective of this research is to improve the performance of Raman biosensors using SERS techniques and/or HC-PCF, by applying partial least squares (PLS) regression and principal component analysis (PCA). I began my research using Raman spectroscopy, PLS analysis and two different validation methods to monitor heparin, an important blood anti-coagulant, in serum at clinical levels. I achieved lower LOD of heparin in serum using the Test Set Validation (TSV) method. The PLS analysis allowed me to distinguish between weak Raman signals of heparin in serum and background noise. I then focused on using SERS to further improve the LOD of analytes, and accomplished simultaneous detection of GLU-GABA in serum at clinical levels using the SERS and PLS models. This work demonstrated the applicability of using SERS in conjunction with PLS to measure properties of samples in blood serum. I also used SERS with HC-PCF configuration to detect leukemia cells, one of the most recurrent types of pediatric cancers. This was achieved by applying PLS regression and PCA techniques. Improving LOD was the next objective, and I was able to achieve this by improving the PLS model to decrease errors and remove outliers or unnecessary variables. The results of the final optimized models were evaluated by comparing them with the results of previous models of Heparin and Leukemia cell detection in previous sections. Finally, as a clinical application of Raman biosensors, I applied the enhanced Raman technique to detect polycystic ovary syndrome (PCOS) disease, and to determine the role of chemerin in this disease. I used SERS in conjunction with PCA to differentiate between PCOS and non-PCOS patients. I also confirmed the role of chemerin in PCOS disease, measured the level of chemerin, a chemoattractant protein, in PCOS and non-PCOS patients using PLS, and further improved LOD with the PLS regression model, as proposed in previous section.
Style APA, Harvard, Vancouver, ISO itp.
2

Kunarajah, Enoch Arumaishanth. "Distributed Raman amplifiers". Thesis, University of Essex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399979.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Nash, J. "Time resolved Raman scattering in liquid crystals using a Raman microprobe". Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356443.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tanaka, Tomoyoshi. "Resonance raman and surface enhanced raman studies of hemeproteins and model compounds". Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/27678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Delhaye, Caroline. "Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surface". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13927/document.

Pełny tekst źródła
Streszczenie:
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal
This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel
Style APA, Harvard, Vancouver, ISO itp.
6

Cazayous, Maximilien. "Interférences Raman et Nanostructures". Phd thesis, Université Paul Sabatier - Toulouse III, 2002. http://tel.archives-ouvertes.fr/tel-00001850.

Pełny tekst źródła
Streszczenie:
Les structurations de la matière à l'échelle nanométrique ont ouvert de larges champs d'étude. L'analyse des propriétés structurales des nanostructures, de leur degré d'organisation ainsi que leur influence sur les propriétés électroniques représentent actuellement un défi de première importance. Pour accéder à ces informations, il est souvent nécessaire de faire appel à un ensemble de techniques expérimentales et numériques souvent complexes dans leur mise en oeuvre. Dans cette contribution, nous étudions l'organisation et le confinement électronique dans des multiplans de boîtes quantiques, en nous appuyant à la fois sur une étude expérimentale et un travail de modélisation. Les interférences Raman, observées dans la gamme des phonons acoustiques, résultent de l'interaction entre ces derniers et les états électroniques localisés dans les nanostructures. Parce qu'ils explorent une gamme allant de quelques nanomètres à plusieurs centaines de nanomètres, les phonons acoustiques représentent une sonde particulièrement efficace pour l'étude des nanosystèmes. Les interférences Raman utilisent leur sensibilité pour la mesure des propriétés structurales et électroniques. Elles permettent de mesurer les effets de corrélation verticale et latérale dans les multiplans de boîtes quantiques. Nous avons développé un modèle général dont le domaine d'application s'étend des systèmes contenant quelques plans au super-réseaux. En utilisant l'analyse de Fourier des interférences, on détermine la fonction d'auto-corrélation de la densité de probabilité électronique selon l'axe de croissance. Sensible à la taille et à la forme de la densité électronique, les interférences Raman ouvrent la voie à une imagerie optique de la densité électronique.
Style APA, Harvard, Vancouver, ISO itp.
7

Wiley, James Hugh. "Raman spectra of celluloses". Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hagen, Johannes. "Spektral beherrschter Raman-Faserlaser /". Aachen : Shaker, 2008. http://d-nb.info/988549115/04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Grantier, David Raymond. "Chemically induced raman scattering". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30321.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Li, Yun-Thai. "Tip-enhanced Raman spectroscopy". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Raman"

1

Si︠a︡dni︠o︡ŭ, Maseĭ. Raman Korzi︠u︡k: Raman. Nʹi︠u︡ I︠o︡rk: [publisher not identified], 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Duras, Marguerite. Raman =: L'amant. Tōkyō: Kawade Shobō Shinsha, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

I︠a︡kavenka, Vasilʹ T︠s︡imafeevich. Nadlom: Raman. Minsk: Bellitfond, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Pestrak, Pilip. Seradzybor: Raman. Minsk: "Mastatskai͡a︡ litaratura", 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zoubir, Arnaud, red. Raman Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Savitski, Alesʹ. Verasy: Raman. Minsk: "Mastatskai͡a︡ lit-ra", 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Levanovich, Leanid. Shchygly: Raman. Minsk: Mastatskai︠a︡ litaratura, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Dalidovich, Henrykh. Pabudz͡h︡anyi͡a︡: Raman. Minsk: "Mastatskai͡a︡ lit-ra", 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Krumkach: Raman. Minsk: Mastatskai︠a︡ litaratura, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Chorny, Kuzʹma. Zi͡a︡mli͡a︡: Raman. Minsk: "Belaruskai͡a︡ ėntsyklapedyi͡a︡", 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Raman"

1

Clark, Robin J. H. "Raman, Resonance Raman and Electronic Raman Spectroscopy". W Vibronic Processes in Inorganic Chemistry, 301–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1029-4_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Berna, Francesco. "Raman". W Encyclopedia of Geoarchaeology, 702–3. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-1-4020-4409-0_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fan, Fengtao, Zhaochi Feng i Can Li. "Raman and UV-Raman Spectroscopies". W Characterization of Solid Materials and Heterogeneous Catalysts, 49–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Esmonde-White, Francis W. L., i Michael D. Morris. "Raman Imaging and Raman Mapping". W Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, 97–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02649-2_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lee, Eunah. "Imaging Modes". W Raman Imaging, 1–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Georgi, Carsten, Miriam Böhmler, Huihong Qian, Lukas Novotny i Achim Hartschuh. "Tip-Enhanced Near-Field Optical Microscopy of Carbon Nanotubes". W Raman Imaging, 301–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hashimoto, Mamoru, Taro Ichimura i Katsumasa Fujita. "CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging". W Raman Imaging, 317–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Rigneault, Hervé, i David Gachet. "Background-free Coherent Raman Imaging: The CARS and SRS Contrast Mechanisms". W Raman Imaging, 347–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Tiberj, Antoine, i Jean Camassel. "Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices". W Raman Imaging, 39–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gouadec, G., L. Bellot-Gurlet, D. Baron i Ph Colomban. "Raman Mapping for the Investigation of Nano-phased Materials". W Raman Imaging, 85–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Raman"

1

Vitukhnovsky, A. G. "Optical near-field microscopy methods in biology and medicine". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kazaryan, Airazat M. "Optical biopsy: laser autofluorescent and Raman spectroscopies in tumor diagnostics". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Man'ko, Olga V. "Photon distribution function for stimulated Raman scattering". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bilyi, Mykola U., G. I. Gaididei i V. P. Sakun. "Raman spectroscopy of vibronic excitations in aqueous solutions". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Drampyan, Raphael K. "Vortex structure in stimulated Raman scattering beam profile". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kuznetsova, Tatiana I. "Stimulated Raman scattering in waveguides of subwavelength radius". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Barille, Regis, Anna D. Kudryavtseva, Genevieve Rivoire, Albina I. Sokolovskaya i Nicolaii V. Tcherniega. "Statistical properties of SRS excited in acetone". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bukalov, Sergey S., i Larissa A. Leites. "Raman study of order-disorder phase transitions in polydialkylmetallanes of the type [R2M]n: organometallic polymers with the main chain consisting entirely of either Si, or Ge, or Sn atoms". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Slobodyanyuk, Alexander V., i S. G. Garasevich. "Peculiarities of Raman scattering in gyrotropic crystals". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gorelik, Vladimir S., Alexandr L. Karuzskii, Yurii V. Klevkov, Alexander V. Kvit, Sergey A. Medvedev, Anatolii V. Perestoronin i Pavel P. Sverbil. "Raman scattering and anti-Stokes luminescence in wide-gap semiconductors". W Raman Scattering, redaktorzy Vladimir S. Gorelik i Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Raman"

1

SEDLACEK, III, A. J. FINFROCK,C. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS. Office of Scientific and Technical Information (OSTI), wrzesień 2002. http://dx.doi.org/10.2172/15006636.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Author, Not Given. (Hadamard Raman imaging). Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/5090154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Carter, J. Chance, David H. Chambers, Paul T. Steele, Peter Haugen i Don Heller. UV Excited Photoacoustic Raman. Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1113407.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Polk, Donald. Raman Spectra of Glasses. Fort Belvoir, VA: Defense Technical Information Center, listopad 1986. http://dx.doi.org/10.21236/ada203343.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Newsom, RK. Raman Lidar (RL) Handbook. Office of Scientific and Technical Information (OSTI), marzec 2009. http://dx.doi.org/10.2172/1020561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Edwards, D. F. Raman scattering in crystals. Office of Scientific and Technical Information (OSTI), wrzesień 1988. http://dx.doi.org/10.2172/7032252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Guenther, B. D. Snapshot Raman Spectral Imager. Fort Belvoir, VA: Defense Technical Information Center, marzec 2010. http://dx.doi.org/10.21236/ada522778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Azuma, Y., T. LeBrun, M. MacDonald i S. H. Southworth. Auger resonant Raman spectroscopy. Office of Scientific and Technical Information (OSTI), sierpień 1995. http://dx.doi.org/10.2172/166503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sharma, Shiv K., Anupam K. Misra, Ava C. Dykes i Lori E. Kamemoto. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology. Fort Belvoir, VA: Defense Technical Information Center, październik 2012. http://dx.doi.org/10.21236/ada581577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

GENERAL PHYSICS INST MOSCOW (USSR). Solid State Raman Materials Characterization and Raman Shifting Of 1.3 Micron Laser Radiation. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2000. http://dx.doi.org/10.21236/ada400129.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii