Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Rainfall intensity.

Książki na temat „Rainfall intensity”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 43 najlepszych książek naukowych na temat „Rainfall intensity”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hogg, W. D. Rainfall intensity-duration frequency values for Canadian locations. Downsview, Ont: Environment Canada, Atmospheric Environment Service, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Toronto, University of, red. Rainfall intensity-duration-frequency curves for Ontario locations. [Toronto]: University of Toronto, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Purvis, John C. Maximum rainfall intensity in South Carolina by county. Columbia, S.C: South Carolina State Climatology Office, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

E, Dowling Norman, i Langley Research Center, red. Verification of rain-flow reconstructions of a variable amplitude load history. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

E, Dowling Norman, i Langley Research Center, red. Verification of rain-flow reconstructions of a variable amplitude load history. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Magni, Nelson Luiz Goi. Precipitações intensas no estado de São Paulo. São Paulo: Centro Tecnológico de Hidráulica, Departamento de Aguas e Energia Elétrica, Escola Politécnica da Universidade de São Paulo, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zahar, Yadh. Eléments d'hydrologie pour l'aménagement: Modélisation spatiale et temporelle des précipitations extrêmes et érosives en Tunisie centrale. [Manouba]: Université des lettres, des arts et des sciences humaines, Tunis I, Faculté des lettres de la Manouba, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Air Resources Laboratory (U.S.), red. Precipitation frequency and intensity at the Idaho National Engineering Laboratory. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Min-ho, Yi. Kangu kwanch'ŭk chŏnghwakto hyangsang e kwanhan yŏn'gu: Study for improvement of rainfall measurement accuracy. Sŏul T'ŭkpyŏlsi: Kukt'o Haeyangbu Han'gang Hongsu T'ongjeso, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Khaladkar, R. M. Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

C, Wilson Raymond, Torikai Jill D, Ellen Stephen D, Geological Survey (U.S.) i Honolulu (Hawaii). Dept. of Public Works, red. Development of rainfall warning thresholds for debris flows in the Honolulu District, Oahu. [Menlo Park, CA]: Dept. of the Interior, U.S. Geological Survey, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Asquith, William H. Atlas of depth-duration frequency of precipitation annual maxima for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, Water Resources Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Asquith, William H. Depth-duration frequency of precipitation for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Asquith, William H. Atlas of depth-duration frequency of precipitation annual maxima for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, Water Resources Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Asquith, William H. Atlas of depth-duration frequency of precipitation annual maxima for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, Water Resources Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Asquith, William H. Atlas of depth-duration frequency of precipitation annual maxima for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, Water Resources Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Asquith, William H. Atlas of depth-duration frequency of precipitation annual maxima for Texas. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, Water Resources Division, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Tortorelli, Robert L. Depth-duration frequency of precipitation for Oklahoma. Oklahoma City, OK: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

United States. Bureau of Reclamation i Morrison-Knudsen Engineers Inc, red. Determination of an upper limit design rainstorm for the Colorado River Basin above Hoover Dam. Denver, Colo: U.S. Dept. of the Interior, Bureau of Reclamation, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jet Propulsion Laboratory (U.S.), red. Shuttle Imaging Radar-B (SIR-B) data analysis for identifying rainfall event occurrence and intensity: Final report. Chevy Chase, Md: Earth Satellite Corp., 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Rainfall intensity over short periods in Cyprus. Nicosia: The Service, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Geological Survey (U.S.). Application of methods for analysis of rainfall intensity in areas of Israeli, Jordanian, and Palestinian interest. 2006.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Verification of rain-flow reconstructions of a variable amplitude load history. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity. Storming Media, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Shuttle Imaging Radar-B (SIR-B) data analysis for identifying rainfall event occurrence and intensity: Final report. Chevy Chase, Md: Earth Satellite Corp., 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Hameed, Saji N. The Indian Ocean Dipole. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.619.

Pełny tekst źródła
Streszczenie:
Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.
Style APA, Harvard, Vancouver, ISO itp.
41

Kirch, Patrick V. The Prehistory of Hawai‘i. Redaktorzy Ethan E. Cochrane i Terry L. Hunt. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199925070.013.027.

Pełny tekst źródła
Streszczenie:
The Hawaiian Islands are the most isolated inhabited archipelago in the world. Initially colonized around A.D. 1000, the environmental gradients of rainfall and island-age have influenced subsequent cultural variation and differentiation in the islands. Settlements are typically dispersed hamlets and integrated within agricultural facilities such as irrigated pondfields and dryland field systems. Populations were politically organized in idealized pie-shaped units or ahupua`a that typically encompass a cross-section of island resources. Material culture , including fishhooks, stone tools, and religious temples, is broadly similar within these units, but there is also much evidence for elite control of specialized production in some areas. The Hawaiian Islands are the archetypal chiefdom society, although based on changes in demography, monumental architecture (heiau) and royal centers, intensive agriculture, and divine kingship, the population had likely crossed the threshold of sociopolitical complexity to that of an archaic state prior to the arrival of Europeans in 1778.
Style APA, Harvard, Vancouver, ISO itp.
42

Kaplan, Jonathan, i Federico Paredes Umaña. Water, Cacao, and The Early Maya of Chocóla. University Press of Florida, 2018. http://dx.doi.org/10.5744/florida/9780813056746.001.0001.

Pełny tekst źródła
Streszczenie:
Before the authors’ research, Chocolá was no more than an intriguing legend. Chocolá’s apparent political links to the greatest Preclassic southern Maya area polity, Kaminaljuyu, would make any discovery about Chocolá conceivably vital to a better understanding of Maya origins and New World archaeology, as both ancient cities are located in the Southern Maya Region. Two facts led researchers to search more specifically for the material bases for Chocolá’s rise to power: 1) Mesoamerica’s greatest rainfall, 2) cacao groves around the modern village lying atop the ancient city. Cacao was so important to the Maya that, mythologically, the cacao god was the maize god’s brother and uncle of the “Hero Twins,” conceived as the aboriginal creators of the Maya people. If water control systems have been documented archaeologically at virtually all great ancient cities around the world, cacao is uniquely a Maya “invention,” the Maya being the first people in the world to domesticate the plant and cultivate it through intensive agriculture. These two discoveries—impressive water management and cacao at Preclassic Chocolá—likely are not coincidental. A complex, hierarchical society would have been in place for arboriculture of water-thirsty cacao for long-distance ancient trade. Thus, two material substances, one necessary for human survival, the other highly valued throughout Mesoamerica as consumable and essential in Maya mythology, may explain, in part, how this and other Southern Maya “kingdoms of chocolate” may represent a “sweet beginning” for one of the greatest civilizations of the ancient world.
Style APA, Harvard, Vancouver, ISO itp.
43

Fensholt, Rasmus, Cheikh Mbow, Martin Brandt i Kjeld Rasmussen. Desertification and Re-Greening of the Sahel. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.553.

Pełny tekst źródła
Streszczenie:
In the past 50 years, human activities and climatic variability have caused major environmental changes in the semi-arid Sahelian zone and desertification/degradation of arable lands is of major concern for livelihoods and food security. In the wake of the Sahel droughts in the early 1970s and 1980s, the UN focused on the problem of desertification by organizing the UN Conference on Desertification (UNCOD) in Nairobi in 1976. This fuelled a significant increase in the often alarmist popular accounts of desertification as well as scientific efforts in providing an understanding of the mechanisms involved. The global interest in the subject led to the nomination of desertification as focal point for one of three international environmental conventions: the UN Convention to Combat Desertification (UNCCD), emerging from the Rio conference in 1992. This implied that substantial efforts were made to quantify the extent of desertification and to understand its causes. Desertification is a complex and multi-faceted phenomenon aggravating poverty that can be seen as both a cause and a consequence of land resource depletion. As reflected in its definition adopted by the UNCCD, desertification is “land degradation in arid, semi-arid[,] and dry sub-humid areas resulting from various factors, including climate variation and human activities” (UN, 1992). While desertification was seen as a phenomenon of relevance to drylands globally, the Sahel-Sudan region remained a region of specific interest and a significant amount of scientific efforts have been invested to provide an empirically supported understanding of both climatic and anthropogenic factors involved. Despite decades of intensive research on human–environmental systems in the Sahel, there is no overall consensus about the severity of desertification and the scientific literature is characterized by a range of conflicting observations and interpretations of the environmental conditions in the region. Earth Observation (EO) studies generally show a positive trend in rainfall and vegetation greenness over the last decades for the majority of the Sahel and this has been interpreted as an increase in biomass and contradicts narratives of a vicious cycle of widespread degradation caused by human overuse and climate change. Even though an increase in vegetation greenness, as observed from EO data, can be confirmed by ground observations, long-term assessments of biodiversity at finer spatial scales highlight a negative trend in species diversity in several studies and overall it remains unclear if the observed positive trends provide an environmental improvement with positive effects on people’s livelihood.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii