Artykuły w czasopismach na temat „RAG1 expression”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „RAG1 expression”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hnatova, Martina, Micheline Wésolowski-Louvel, Guenaëlle Dieppois, Julien Deffaud i Marc Lemaire. "Characterization of KlGRR1 and SMS1 Genes, Two New Elements of the Glucose Signaling Pathway of Kluyveromyces lactis". Eukaryotic Cell 7, nr 8 (13.06.2008): 1299–308. http://dx.doi.org/10.1128/ec.00454-07.
Pełny tekst źródłaPrior, C., P. Mamessier, H. Fukuhara, X. J. Chen i M. Wesolowski-Louvel. "The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis". Molecular and Cellular Biology 13, nr 7 (lipiec 1993): 3882–89. http://dx.doi.org/10.1128/mcb.13.7.3882-3889.1993.
Pełny tekst źródłaPrior, C., P. Mamessier, H. Fukuhara, X. J. Chen i M. Wesolowski-Louvel. "The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis." Molecular and Cellular Biology 13, nr 7 (lipiec 1993): 3882–89. http://dx.doi.org/10.1128/mcb.13.7.3882.
Pełny tekst źródłaNaik, Abani Kanta, Aaron T. Byrd, Aaron C. K. Lucander i Michael S. Krangel. "Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4+CD8+ thymocytes". Journal of Experimental Medicine 216, nr 1 (13.12.2018): 231–43. http://dx.doi.org/10.1084/jem.20181402.
Pełny tekst źródłaFisher, Megan, i Craig Bassing. "Pre-B cells suppress RAG expression in response to DNA double-strand breaks (HEM1P.225)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 50.8. http://dx.doi.org/10.4049/jimmunol.194.supp.50.8.
Pełny tekst źródłaKlemm, Lars, Srividya Swaminathan, Elli Papaemmanuil, Anthony M. Ford, Mel Greaves, Rafael Casellas, David Schatz, Michael R. Lieber i Markus Muschen. "Exposure to Inflammatory Immune Responses As Driver of Clonal Evolution in Childhood Acute Lymphoblastic Leukemia". Blood 126, nr 23 (3.12.2015): 166. http://dx.doi.org/10.1182/blood.v126.23.166.166.
Pełny tekst źródłaHao, Bingtao, Abani Kanta Naik, Akiko Watanabe, Hirokazu Tanaka, Liang Chen, Hunter W. Richards, Motonari Kondo i in. "An anti-silencer– and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development". Journal of Experimental Medicine 212, nr 5 (6.04.2015): 809–24. http://dx.doi.org/10.1084/jem.20142207.
Pełny tekst źródłaSwaminathan, Srividya, Lars Klemm, Eugene Park, Anthony M. Ford, Soo-mi Kweon, Daniel Trageser, Brian Hasselfeld i in. "Mechanisms of Clonal Evolution of Pre-Leukemic Clones in Childhood Pre-B Acute Lymphoblastic Leukemia". Blood 124, nr 21 (6.12.2014): 861. http://dx.doi.org/10.1182/blood.v124.21.861.861.
Pełny tekst źródłaLee, Baeck-seung, Joseph D. Dekker, Bum-kyu Lee, Vishwanath R. Iyer, Barry P. Sleckman, Arthur L. Shaffer, Gregory C. Ippolito i Philip W. Tucker. "The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination". Molecular and Cellular Biology 33, nr 9 (25.02.2013): 1768–81. http://dx.doi.org/10.1128/mcb.00987-12.
Pełny tekst źródłaBories, JC, JM Cayuela, P. Loiseau i F. Sigaux. "Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression". Blood 78, nr 8 (15.10.1991): 2053–61. http://dx.doi.org/10.1182/blood.v78.8.2053.2053.
Pełny tekst źródłaBories, JC, JM Cayuela, P. Loiseau i F. Sigaux. "Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression". Blood 78, nr 8 (15.10.1991): 2053–61. http://dx.doi.org/10.1182/blood.v78.8.2053.bloodjournal7882053.
Pełny tekst źródłaMalshetty, Vidyasagar, Jian Chen, Mary Hanna i Patricia Cortes. "Role of Pax5 and YY1 in regulation of V(D)J recombination (111.1)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 111.1. http://dx.doi.org/10.4049/jimmunol.188.supp.111.1.
Pełny tekst źródłaSwaminathan, Srividya, Lars Klemm, Anthony M. Ford, Klaus Schwarz, Rafael Casellas, Lothar Hennighausen, Huimin Geng i in. "Cooperation Between Aid and the Rag1/Rag2 V(D)J Recombinase Drives Clonal Evolution of Childhood Acute Lymphoblastic Leukemia". Blood 120, nr 21 (16.11.2012): 519. http://dx.doi.org/10.1182/blood.v120.21.519.519.
Pełny tekst źródłaSchabla, N. Max, i Patrick C. Swanson. "The CRL4VPRBP(DCAF1) E3 ubiquitin ligase directs constitutive RAG1 degradation in a non-lymphoid cell line". PLOS ONE 16, nr 10 (14.10.2021): e0258683. http://dx.doi.org/10.1371/journal.pone.0258683.
Pełny tekst źródłaSchabla, N. Max, i Patrick C. Swanson. "The CRL4VPRBP(DCAF1) E3 ubiquitin ligase directs constitutive RAG1 degradation in a non-lymphoid cell line". PLOS ONE 16, nr 10 (14.10.2021): e0258683. http://dx.doi.org/10.1371/journal.pone.0258683.
Pełny tekst źródłaLassoued, Kaiss, Vincent Fuentes, Hussein Gamlouch, Eliane Bissac, Jean-Pierre Marolleau, Jacques Rochette i Hicham Bouhlal. "Role of the MAPK and PI3-Kinase/Akt Pathways in the Pre-B Cell Receptor (pre-BCR)-Induced NF-κb Activation and Rag1 and Rag2 Down Regulation." Blood 114, nr 22 (20.11.2009): 2667. http://dx.doi.org/10.1182/blood.v114.22.2667.2667.
Pełny tekst źródłaMeru, Nadine, Andreas Jung, Irith Baumann i Gerald Niedobitek. "Expression of the recombination-activating genes in extrafollicular lymphocytes but no apparent reinduction in germinal center reactions in human tonsils". Blood 99, nr 2 (15.01.2002): 531–37. http://dx.doi.org/10.1182/blood.v99.2.531.
Pełny tekst źródłaMiot, Charline, Rahul Arya, Thomas Burn, Edward M. Behrens i Craig Bassing. "Elucidating roles of the Rag1 N-terminus and RAG DSBs in shaping the cellular response to TCRa recombination". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 80.8. http://dx.doi.org/10.4049/jimmunol.204.supp.80.8.
Pełny tekst źródłaKuwata, Naomi, Hideya Igarashi, Takafumi Ohmura, Shinichi Aizawa i Nobuo Sakaguchi. "Cutting Edge: Absence of Expression of RAG1 in Peritoneal B-1 Cells Detected by Knocking into RAG1 Locus with Green Fluorescent Protein Gene". Journal of Immunology 163, nr 12 (15.12.1999): 6355–59. http://dx.doi.org/10.4049/jimmunol.163.12.6355.
Pełny tekst źródłaDolence, Joseph J., Kimberly Gwin i Kay L. Medina. "Haploinsufficiency of Flt3-ligand limits RAG1 locus activation (87.2)". Journal of Immunology 182, nr 1_Supplement (1.04.2009): 87.2. http://dx.doi.org/10.4049/jimmunol.182.supp.87.2.
Pełny tekst źródłaShaw, Albert C., Wojciech Swat, Roger Ferrini, Laurie Davidson i Frederick W. Alt. "Activated Ras Signals Developmental Progression of Recombinase-activating Gene (RAG)-deficient Pro-B Lymphocytes". Journal of Experimental Medicine 189, nr 1 (4.01.1999): 123–29. http://dx.doi.org/10.1084/jem.189.1.123.
Pełny tekst źródłaGollwitzer, Peter, Nina Grützmacher, Sabine Wilhelm, Daniel Kümmel i Constantinos Demetriades. "A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids". Nature Cell Biology 24, nr 9 (wrzesień 2022): 1394–406. http://dx.doi.org/10.1038/s41556-022-00976-y.
Pełny tekst źródłaIgarashi, Hideya, Naomi Kuwata, Kumiko Kiyota, Kiminobu Sumita, Toshio Suda, Shiro Ono, Steven R. Bauer i Nobuo Sakaguchi. "Localization of recombination activating gene 1/green fluorescent protein (RAG1/GFP) expression in secondary lymphoid organs after immunization with T-dependent antigens in rag1/gfpknockin mice". Blood 97, nr 9 (1.05.2001): 2680–87. http://dx.doi.org/10.1182/blood.v97.9.2680.
Pełny tekst źródłaSchabla, N. Max, Greg A. Perry, Victoria L. Palmer i Patrick C. Swanson. "VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation". Journal of Immunology 201, nr 3 (20.06.2018): 930–39. http://dx.doi.org/10.4049/jimmunol.1800054.
Pełny tekst źródłaPike-Overzet, Karin, Christopher Baum, Robbert G. M. Bredius, Marina Cavazzana, Gert-Jan Driessen, Willem E. Fibbe, H. Bobby Gaspar i in. "Successful RAG1-SCID gene therapy depends on the level of RAG1 expression". Journal of Allergy and Clinical Immunology 134, nr 1 (lipiec 2014): 242–43. http://dx.doi.org/10.1016/j.jaci.2014.04.033.
Pełny tekst źródłaCarroll, Virginia A., Mark K. Lafferty, Luigi Marchionni, Joseph L. Bryant, Robert C. Gallo i Alfredo Garzino-Demo. "Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice". Proceedings of the National Academy of Sciences 113, nr 46 (31.10.2016): 13168–73. http://dx.doi.org/10.1073/pnas.1615258113.
Pełny tekst źródłaXu, Mei, Brenda Reid i Chaim M. Roifman. "Identification of a novel RAG1 hypomorphic mutation in a child presenting with disseminated vaccine-strain varicella". LymphoSign Journal 8, nr 1 (1.03.2021): 5–10. http://dx.doi.org/10.14785/lymphosign-2021-0014.
Pełny tekst źródłaMuire, Preeti Judith, Larry Hanson, Jeffrey Yoder i Lora Petrie-Hanson. "Transcript analysis of natural killer (NK) cell specific genes in the liver, kidney and spleen tissues of rag1 −/− mutant zebrafish in response to in vivo administration of TLR ligands". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 216.4. http://dx.doi.org/10.4049/jimmunol.196.supp.216.4.
Pełny tekst źródłaHan, S., B. Zheng, D. G. Schatz, E. Spanopoulou i G. Kelsoe. "Neoteny in Lymphocytes: Rag1 and Rag2 Expression in Germinal Center B Cells". Science 274, nr 5295 (20.12.1996): 2094–97. http://dx.doi.org/10.1126/science.274.5295.2094.
Pełny tekst źródłaGaller, Gunther R., Cornelia Mundt, Mathew Parker, Roberta Pelanda, Inga-Lill Mårtensson i Thomas H. Winkler. "Surface μ Heavy Chain Signals Down-Regulation of the V(D)J-Recombinase Machinery in the Absence of Surrogate Light Chain Components". Journal of Experimental Medicine 199, nr 11 (1.06.2004): 1523–32. http://dx.doi.org/10.1084/jem.20031523.
Pełny tekst źródłaHauer, Julia, Charles Mullighan, Estelle Morillon, Gary Wang, Julie Bruneau, Nicole Brousse, Marc Lelorc'h i in. "Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia". Blood 118, nr 3 (21.07.2011): 544–53. http://dx.doi.org/10.1182/blood-2010-09-305383.
Pełny tekst źródłaVaitaitis, Gisela, i David Wagner. "CD40 induced TCR revision promotes tolerance to self-antigen in Type I Diabetes pathogenic CD4+CD40+ T cells. (176.11)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 176.11. http://dx.doi.org/10.4049/jimmunol.188.supp.176.11.
Pełny tekst źródłaSathe, Priyanka, David Vremec, Li Wu, Lynn Corcoran i Ken Shortman. "Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells". Blood 121, nr 1 (3.01.2013): 11–19. http://dx.doi.org/10.1182/blood-2012-02-413336.
Pełny tekst źródłaAnbazhagan, Kolandaswamy, Vincent Fuentes, Eliane Bissac, Remy Nyga, Naomi Taylor, Jacques Rochette i Kaiss Lassoued. "The Human Pre-B Cell Receptor Signaling Cascade Is Regulated Via PI-3Kinase and MAPK Pathway". Blood 118, nr 21 (18.11.2011): 1314. http://dx.doi.org/10.1182/blood.v118.21.1314.1314.
Pełny tekst źródłaYoshikawa, Genki, Kazuko Miyazaki, Hiroyuki Ogata i Masaki Miyazaki. "The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System". International Journal of Molecular Sciences 22, nr 11 (31.05.2021): 5888. http://dx.doi.org/10.3390/ijms22115888.
Pełny tekst źródłaYokota, Takafumi, Kenji Oritani, Stefan Butz, Koichi Kokame, Paul W. Kincade, Toshiyuki Miyata, Dietmar Vestweber i Yuzuru Kanakura. "The Endothelial Antigen ESAM Marks Hematopoietic Stem Cells throughout Life". Blood 112, nr 11 (16.11.2008): 727. http://dx.doi.org/10.1182/blood.v112.11.727.727.
Pełny tekst źródłaWillett, Catherine E., Jason J. Cherry i Lisa A. Steiner. "Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish". Immunogenetics 45, nr 6 (9.04.1997): 394–404. http://dx.doi.org/10.1007/s002510050221.
Pełny tekst źródłaNiebergall, Emily R., Emily A. Beck, Susan Bassham i William A. Cresko. "Advancing threespine stickleback as an outbred immunogenetics model by pinpointing the onset of adaptive immunity". Journal of Immunology 202, nr 1_Supplement (1.05.2019): 53.25. http://dx.doi.org/10.4049/jimmunol.202.supp.53.25.
Pełny tekst źródłaDangoudoubiyam, Sriveny, Ramesh Vemulapalli, Kathy Hancock i Kevin R. Kazacos. "Molecular Cloning of an Immunogenic Protein of Baylisascaris procyonis and Expression in Escherichia coli for Use in Developing Improved Serodiagnostic Assays". Clinical and Vaccine Immunology 17, nr 12 (6.10.2010): 1933–39. http://dx.doi.org/10.1128/cvi.00404-10.
Pełny tekst źródłaJain, Pooja, Rashida Ginwala, Paige Charlins, Ramesh Akkina, Ronak Loonawat, Breanna Caruso3, Steven Jacobson, Sreesha Sreedhar i Zafar Khan. "HTLV-1 infection and neuropathogenesis in the context of Rag1−/−γc−/− (RAG1) and BLT mice". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 217.30. http://dx.doi.org/10.4049/jimmunol.196.supp.217.30.
Pełny tekst źródłaNganga, Vincent K., Victoria L. Palmer, Hina Naushad, Michele D. Kassmeier, Dirk K. Anderson, Greg A. Perry, Nathan M. Schabla i Patrick C. Swanson. "Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1". Blood 121, nr 19 (9.05.2013): 3855–66. http://dx.doi.org/10.1182/blood-2012-08-446732.
Pełny tekst źródłaMadagula, Kiran Kumar, Rashida Ginwala, Breanna Caruso, Zafar K. Khan, Glen M. Chew, Ajinkya Pattekar, Michael J. Corley i in. "HTLV-1 infection and neuropathogenesis in the context of Rag1−/−γc−/− (RAG1-hu) and BLT mice". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 78.29. http://dx.doi.org/10.4049/jimmunol.198.supp.78.29.
Pełny tekst źródłaGlynn, Rebecca, i Craig Bassing. "Elucidating the Role of NEMO and SpiC in DNA Double Strand Break Induced Inhibition of V(D)J Recombination". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 223.12. http://dx.doi.org/10.4049/jimmunol.204.supp.223.12.
Pełny tekst źródłaGirschick, Hermann J., Amrie C. Grammer, Toshihiro Nanki, Marlyn Mayo i Peter E. Lipsky. "RAG1 and RAG2 Expression by B Cell Subsets from Human Tonsil and Peripheral Blood". Journal of Immunology 166, nr 1 (1.01.2001): 377–86. http://dx.doi.org/10.4049/jimmunol.166.1.377.
Pełny tekst źródłaLynch, Sara, Dermot Kelleher, Ross McManus i Cliona O'Farrelly. "RAG1 and RAG2 expression in human intestinal epithelium: evidence of extrathymic T cell differentiation". European Journal of Immunology 25, nr 5 (maj 1995): 1143–47. http://dx.doi.org/10.1002/eji.1830250502.
Pełny tekst źródłaKurtz, Courtney C., Ioannis Drygiannakis, Makoto Naganuma, Sanford Feldman, Vasileios Bekiaris, Joel Linden, Carl F. Ware i Peter B. Ernst. "Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells". American Journal of Physiology-Gastrointestinal and Liver Physiology 307, nr 3 (1.08.2014): G338—G346. http://dx.doi.org/10.1152/ajpgi.00404.2013.
Pełny tekst źródłaJarvelainen, Harri, Wei-Hsiang Lin, Moorim Kang, Xiaojie Zhou, Robert F. Place i Long-Cheng Li. "Preclinical development of RAG1-40-31L: A novel small activating RNA-lipid conjugate targeting tumor suppressor gene p21 for treatment of non-muscle invasive bladder cancer." Journal of Clinical Oncology 41, nr 16_suppl (1.06.2023): e16620-e16620. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e16620.
Pełny tekst źródłaSacramento, Lais A., Camila Farias Amorim, Claudia Lombana i Phillip Scott. "CD8 +T cells require CCR5 expression to mediate immunopathology in cutaneous leishmaniasis". Journal of Immunology 210, nr 1_Supplement (1.05.2023): 81.15. http://dx.doi.org/10.4049/jimmunol.210.supp.81.15.
Pełny tekst źródłaKoulnis, Miro, Ying Liu i Merav Socolovsky. "Negative Autoregulation by Fas Stabilizes the Erythroid Progenitor Pool and Accelerates the Erythropoietic Stress Response". Blood 116, nr 21 (19.11.2010): 2045. http://dx.doi.org/10.1182/blood.v116.21.2045.2045.
Pełny tekst źródłaAuer, Franziska, Deborah Ingenhag, Isidro Sánchez-García, Arndt Borkhardt i Julia Hauer. "Activation Induced Cytidine Deaminase (Aid) Acts As a Gate Keeper in Pro-B Cells and Prevents PB-ALL". Blood 128, nr 22 (2.12.2016): 1538. http://dx.doi.org/10.1182/blood.v128.22.1538.1538.
Pełny tekst źródła