Gotowa bibliografia na temat „RAG1 expression”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „RAG1 expression”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "RAG1 expression"
Hnatova, Martina, Micheline Wésolowski-Louvel, Guenaëlle Dieppois, Julien Deffaud i Marc Lemaire. "Characterization of KlGRR1 and SMS1 Genes, Two New Elements of the Glucose Signaling Pathway of Kluyveromyces lactis". Eukaryotic Cell 7, nr 8 (13.06.2008): 1299–308. http://dx.doi.org/10.1128/ec.00454-07.
Pełny tekst źródłaPrior, C., P. Mamessier, H. Fukuhara, X. J. Chen i M. Wesolowski-Louvel. "The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis". Molecular and Cellular Biology 13, nr 7 (lipiec 1993): 3882–89. http://dx.doi.org/10.1128/mcb.13.7.3882-3889.1993.
Pełny tekst źródłaPrior, C., P. Mamessier, H. Fukuhara, X. J. Chen i M. Wesolowski-Louvel. "The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis." Molecular and Cellular Biology 13, nr 7 (lipiec 1993): 3882–89. http://dx.doi.org/10.1128/mcb.13.7.3882.
Pełny tekst źródłaNaik, Abani Kanta, Aaron T. Byrd, Aaron C. K. Lucander i Michael S. Krangel. "Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4+CD8+ thymocytes". Journal of Experimental Medicine 216, nr 1 (13.12.2018): 231–43. http://dx.doi.org/10.1084/jem.20181402.
Pełny tekst źródłaFisher, Megan, i Craig Bassing. "Pre-B cells suppress RAG expression in response to DNA double-strand breaks (HEM1P.225)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 50.8. http://dx.doi.org/10.4049/jimmunol.194.supp.50.8.
Pełny tekst źródłaKlemm, Lars, Srividya Swaminathan, Elli Papaemmanuil, Anthony M. Ford, Mel Greaves, Rafael Casellas, David Schatz, Michael R. Lieber i Markus Muschen. "Exposure to Inflammatory Immune Responses As Driver of Clonal Evolution in Childhood Acute Lymphoblastic Leukemia". Blood 126, nr 23 (3.12.2015): 166. http://dx.doi.org/10.1182/blood.v126.23.166.166.
Pełny tekst źródłaHao, Bingtao, Abani Kanta Naik, Akiko Watanabe, Hirokazu Tanaka, Liang Chen, Hunter W. Richards, Motonari Kondo i in. "An anti-silencer– and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development". Journal of Experimental Medicine 212, nr 5 (6.04.2015): 809–24. http://dx.doi.org/10.1084/jem.20142207.
Pełny tekst źródłaSwaminathan, Srividya, Lars Klemm, Eugene Park, Anthony M. Ford, Soo-mi Kweon, Daniel Trageser, Brian Hasselfeld i in. "Mechanisms of Clonal Evolution of Pre-Leukemic Clones in Childhood Pre-B Acute Lymphoblastic Leukemia". Blood 124, nr 21 (6.12.2014): 861. http://dx.doi.org/10.1182/blood.v124.21.861.861.
Pełny tekst źródłaLee, Baeck-seung, Joseph D. Dekker, Bum-kyu Lee, Vishwanath R. Iyer, Barry P. Sleckman, Arthur L. Shaffer, Gregory C. Ippolito i Philip W. Tucker. "The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination". Molecular and Cellular Biology 33, nr 9 (25.02.2013): 1768–81. http://dx.doi.org/10.1128/mcb.00987-12.
Pełny tekst źródłaBories, JC, JM Cayuela, P. Loiseau i F. Sigaux. "Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression". Blood 78, nr 8 (15.10.1991): 2053–61. http://dx.doi.org/10.1182/blood.v78.8.2053.2053.
Pełny tekst źródłaRozprawy doktorskie na temat "RAG1 expression"
Braga, Aécio Assunção. "Polimorfismos dos genes CD40, ICAM-1, VCAM, E-selectina, LIGHT, RAGE e CX3CR1 relacionados com inflamação e sua associação à obesidade". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/9/9136/tde-26052015-143307/.
Pełny tekst źródłaBackground: Obesity is a serious health problem and it is defined as an excessive fat accumulation which is caused by an imbalance between the amount of energy intake and energy expenditure over a long period. Objective: The main objective of this study was to investigate the contribution of CD403 ICAM-1, VCAM, E-selectin, LIGHT, RAGE e CX3CR1 gene polymorphisms and its association with obesity. Material and Methods: The study was realized at Dante Pazzanese Institute of Cardiology and University Hospital of São Paulo University. There were included 199 individuals (40 normal weight, 55 overweight and 104 obese), all Brazilian, with no genetic link, from all ethnics in both genders (55 men and 144 women), aged between 30 and 68 years. The study of CD40 (rs1883832) C>T, CX3CR1 (rs3732379) C>T, CX3CR1 (rs3732378) G>A, E-selectin (rs5368) C>T, ICAM-1 (rs1799969) G>A , ICAM-1 (rs281432) C>G, LIGHT (rs344560) G>A, LIGHT (rs2291668) C>T, RAGE (rs2070600) G>A, RAGE (rs2236493) C>T and VCAM (rs3176878) C>T were conducted by pyrosequencing. The analysis of LIGHT, CX3CR1, RAGE and ICAM-1 gene expression were performed by real-time PCR and the measurements of PAI-1, IL- 6, TNF-a, resistin, leptin and adiponectin soluble forms using LUMINEX system. Results: The allele and genotype frequency of CD40 (rs1883832) C>T, CX3CR1 (rs3732379) C>T, CX3CR1 (rs3732378) G>A, E-selectin (rs5368) C>T, ICAM-1 (rs1799969) G>A , ICAM-1 (rs281432) C>G, LIGHT (rs344560) G>A, LIGHT (rs2291668) C>T, RAGE (rs2070600) G>A, RAGE (rs2236493) C>T and VCAM (rs3176878) C>T gene polymorphisms showed no significant association with obesity. There was found association in the analysis of CX3CR1 expression with obesity and it was found association of ICAM-1 gene polymorphism (rs281432) G>C with RAGE gene expression in the normal weight group. Conclusion: There was no association of CD40 (rs1883832) C>T, CX3CR1 (rs3732379) C>T, CX3CR1 (rs3732378) G>A, E-selectin (rs5368) C>T, ICAM-1 (rs1799969) G>A , ICAM-1 (rs281432) C>G, LIGHT (rs344560) G>A, LIGHT (rs2291668) C>T, RAGE (rs2070600) G>A, RAGE (rs2236493) C>T and VCAM (rs3176878) C>T gene polymorphisms with obesity. However, it was found association of CX3CR1 gene expression with obesity and an association of ICAM-1 (rs281432) G>C gene polymorphism with RAGE gene expression in normal weight individuals.
Lovejoy, Elizabeth A. "RAGE-based strategies for the control of gene expression". Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/26699.
Pełny tekst źródłaCarvalho, Vanessa Isabel Dias Ribeiro de. "C. albicans Cek1 and Ras1: cloning, expression and purification". Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9526.
Pełny tekst źródłaCandida albicans é um fungo polimórfico e patogénico que reside de forma comensal nas superfícies mucosas humanas. Este fungo apresenta um código genético ambíguo, uma vez que, o codão universal leucina CUG é predominantemente traduzido como serina (97%), mas também como leucina (3%). A análise de proteínas de C. albicans que contêm resíduos CUG em importantes posições funcionais, revela que a ambiguidade do codão modela a função da proteína e poderá ter um papel determinante nas vias de sinalização associadas a mudanças morfológicas e patogénicas. Com o presente estudo pretende-se investigar o efeito da leucina e da serina nas posições CUG (ambiguidade CUG) na estrutura e função de duas proteínas chave nas vias de sinalização de C. albicans, a Ras1 (GTPase) e a Cek1 (Cinase). Estas regulam a transcrição dos genes associados com mudanças morfológicas, patológicas e, por outro lado, contêm resíduos CUG numa posição estritamente conservada e com relevo funcional. Neste contexto foi possível clonar com sucesso genes sintéticos para os centros ativos da Ras1 e Cek1 (variantes de serina e de leucina para o codão CUG) em vetores que apresentam diferentes caudas de solubilidade (MBP, NusA, Trx, ZTag2 e Gb1). Foram desenvolvidos protocolos de alta expressão bacteriana e de purificação para os domínios ativos Ras1 (ligado à Gb1) e Cek1 (ligado à MBP). A análise dos resultados de purificação analítica e de “Dynamic Light Scaterring” demonstraram que as proteínas recombinantes se apresentam na forma monomérica. Ensaios de cristalização estão a ser realizados esperando-se determinar as estruturas tridimensionais das proteínas por cristalografia de raio-X. As estruturas da Cek1 e Ras1 com leucina e serina nas posições CUG, conjuntamente com uma análise meticulosa da sua estabilidade e função in vitro, irão fornecer informações importantes sobre o papel estratégico da ambiguidade natural do codão.
The polymorphic fungal pathogen Candida albicans has an ambiguous genetic code, as the universal leucine CUG codon is predominantly translated as serine (97%) but also as leucine (3%). Analysis of the rare C. albicans proteins containing CUG-encoded residues in functionally relevant positions reveals that codon ambiguity shapes protein function and might have a pivotal role in signaling cascades associated with morphological changes and pathogenesis. The present study investigates the effect of leucine or serine at CUG positions (CUG ambiguity) in the structure and function of two key effectors of signaling cascades in C. albicans, Ras1 (GTPase) and Cek1 (protein kinase), which regulate the transcription of genes associated with morphological changes and pathogenesis. These two proteins contain a CUG residue in a strictly conserved and functionally relevant position. Synthetic genes coding for the active domains of Ras1 and Cek1 (serine and leucine variants for the CUG codon) were successfully cloned into expression vectors carrying different solubility partners (MBP, NusA, Trx, ZTag2 and Gb1). Furthermore, using an incomplete factorial approach, high level bacterial expression and purification protocols for the active domains of Ras1 (in fusion with Gb1) and Cek1 (in fusion with MBP) were developed. Analytical size exclusion chromatography (SEC) and dynamic light scattering (DLS) results indicate that both recombinant proteins are monomeric. Crystallization trials must be done aiming for the determination of their threedimensional structures by X-ray crystallography. The structures of Ras1 and Cek1 with serine or leucine at CUG positions, together with a thorough analysis of their stability and function in vitro, will provide valuable insights into a possible strategic role of natural codon ambiguity.
Kim, Sun. "HAPLOINSUFFICIENCY OF RAI1 AND ITS EFFECT ON BDNF EXPRESSION". VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/165.
Pełny tekst źródłaChen, Suzi Su-Hsin, i suzi chen@med monash edu au. "Cyclooxygenase Expression in Human Diabetes". RMIT University. Medical Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080206.121439.
Pełny tekst źródłaSikora, Kristin [Verfasser]. "RAGE-abhängige S100A8- und S100A9-Expression in humanen THP-1 Zellen / Kristin Sikora". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2009. http://d-nb.info/1023749920/34.
Pełny tekst źródłaGonçalves, Carolina de Souza. "Expressão de proteínas RAP1 recombinantes e produção de anticorpos anti- RAP1: potencial uso como biomarcador no diagnóstico de tumores". s.n, 2014. https://www.arca.fiocruz.br/handle/icict/9945.
Pełny tekst źródłaApproved for entry into archive by Nuzia Santos (nuzia@cpqrr.fiocruz.br) on 2015-04-10T12:21:36Z (GMT) No. of bitstreams: 1 Dissertação final PDF.pdf: 2801952 bytes, checksum: 7ee702b1583d5a7e8912bdabb9228b92 (MD5)
Approved for entry into archive by Nuzia Santos (nuzia@cpqrr.fiocruz.br) on 2015-04-10T12:21:45Z (GMT) No. of bitstreams: 1 Dissertação final PDF.pdf: 2801952 bytes, checksum: 7ee702b1583d5a7e8912bdabb9228b92 (MD5)
Made available in DSpace on 2015-04-10T12:21:45Z (GMT). No. of bitstreams: 1 Dissertação final PDF.pdf: 2801952 bytes, checksum: 7ee702b1583d5a7e8912bdabb9228b92 (MD5) Previous issue date: 2014
Fundação Oswaldo Cruz. Centro de Pesquisa René Rachou. Belo Horizonte, MG, Brasil
Alterações imunofenotípicas qualitativas e quantitativas na expressão da proteína RAP1, uma pequena GTPase da superfamília RAS, estão presentes em diversos tipos de cânceres, tais como carcinomas de células escamosas de orofaringe, câncer papilar da tireóide, câncer de mama, carcinoma de células renais, leucemia, melanoma, neoplasias intraepiteliais e câncer cervical. Entretanto, para a utilização de RAP1 como biomarcador para auxiliar no diagnóstico imuno-histoquímico de tumores, especialmente do câncer cervical, são necessários anticorpos anti-RAP1 a baixo custo, uma vez que, atualmente, os anticorpos disponíveis no Brasil são importados e de custo elevado, tornando inviável sua utilização no diagnóstico de rotina. Assim, este trabalho tem como objetivos a expressão de proteínas RAP1 recombinantes (rRAP1) em sistema bacteriano, e a produção de anticorpos monoclonais e policlonais anti-rRAP1, visando a sua aplicação no diagnóstico de diversos tumores por imuno-histoquímica. Dois genes RAP1 sintéticos codificantes para as proteínas rRAP1A e rRAP1AB foram desenhados, sintetizados e subclonados no plasmídeo de expressão bacteriano pQE9 e sua expressões obtidas na linhagem hospedeira E.coli M15. Após indução com IPTG, as proteínas rRAP1 foram purificadas por cromatografia líquida em coluna de afinidade de quelato de níquel, obtendo-se o rendimento, por litro de cultura bacteriana, de 185,6 mg/L de rRAP1A e 103,9 mg/L de rRAP1AB. As proteínas rRAP1 purificadas foram inoculadas em animais para a produção de anticorpos monoclonais e policlonais anti-rRAP1A e antirRAP1AB. Ensaios imuno-histoquímicos foram realizados em tecidos de pacientes com neoplasia cervical para a avaliação da reatividade dos anticorpos anti-rRAP1 com a proteína RAP1 humana. Uma intensa imunorreatividade foi verificada com o anticorpo anti-rRAP1A (policlonal produzido em coelhos) considerado, até o momento, o melhor candidato para uso na detecção da expressão de RAP1 em ensaios imuno-histoquímicos, o que pode auxiliar no diagnóstico de várias neoplasias, especialmente, do câncer do colo uterino.
Qualitative and quantitative immunophenotypical changes in the expression of RAP1 protein, a small GTPase of the RAS superfamily, have been detected in many types of cancers such as oropharyngeal squamous cell carcinomas, papillary thyroid cancer, breast cancer, renal cell carcinoma, leukemia, melanoma, intraepithelial neoplasia and cervical cancer. However, to use RAP1 as a putative biomarker for immunohistochemical assays to support tumor diagnosis, especially cervical cancer, anti-RAP1 antibodies at low cost are essential, since here in Brazil the anti-RAP antibodies available are imported and expensive making them impractical to use in routine diagnostics. This work aims to express recombinant proteins RAP1 (rRAP1) in bacterial system for the production of monoclonal and polyclonal anti-rRAP1 to be used for diagnosis of various tumors by immunohistochemistry. Two synthetic RAP1 genes coding for rRAP1A and rRAP1AB proteins were designed, synthesized, and subcloned into the pQE9 vector for recombinant protein production in E. coli (strain M15). After IPTG induction, both rRAP1 proteins were purified by nickel chelate affinity chromatography yielding, per liter of bacterial culture, 185,6 mg/L of rRAP1A and 103,9 mg/L of rRAP1AB protein. The purified rRAP1 proteins were used to generate polyclonal and monoclonal antibodies against rRAP1A and against rRAP1AB. Immunohistochemistry experiments were performed on tissues samples from patients with cervical neoplasia to evaluate the reactivity of the anti-rRAP1 antibodies to the human RAP1. An intense immunoreactivity was observed for a rabbit polyclonal anti-rRAP1A antibody, considered so far, the best candidate to be used for RAP1 immunohistochemical testing to support tumor diagnosis, especially cervical cancer.
Di, Candia Leonarda. "The expression and function of RAGE and HMGB1 in airway structural cells in asthma". Thesis, University of Leicester, 2015. http://hdl.handle.net/2381/32339.
Pełny tekst źródłaLalk, Michael [Verfasser]. "Tumorregionen-abhängige Expression der Aminosäure-Sensoren MAP4K3, RagC und VPS34 in Glioblastomen / Michael Lalk". Magdeburg : Universitätsbibliothek, 2018. http://d-nb.info/1174626593/34.
Pełny tekst źródłaRösch, Daniela. "Regulation der Expression der Rezeptoren für advanced glycation end products (RAGE) auf humanen Monozyten". [S.l. : s.n.], 2006.
Znajdź pełny tekst źródłaKsiążki na temat "RAG1 expression"
Gillis, L. Jane. Expression and recombinase activity of RAG 1 and two splice variants of RAG 2 in mature human primary tonsilar B lymphocytes. Ottawa: National Library of Canada, 1999.
Znajdź pełny tekst źródłaFerrazza, Daniele de Andrade, i Hilusca Alves Leite. Mulheres e feminismo: perspectivas históricas e desafios atuais. Edufatecie, 2022. http://dx.doi.org/10.33872/edufatecie.mulheresefeminismo.
Pełny tekst źródłaCzęści książek na temat "RAG1 expression"
Ablin, Jason. "Rage On! Gender/Sex, Emotional, and Physical Expression in Schools". W The Gender Equation in Schools, 152–68. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003217022-8.
Pełny tekst źródłaTtofa, Juliette, i Paul Greenhouse. "Rage: the shadow side of unspeakable pain". W Using the Expressive Arts with Children and Young People Who Have Experienced Trauma, 19. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003121411-9.
Pełny tekst źródłavan Lent, Anja U., Mireille Centlivre, Maho Nagasawa, Julien J. Karrich, Stephan M. Pouw, Kees Weijer, Hergen Spits, Bianca Blom i Nicolas Legrand. "In Vivo Modulation of Gene Expression by Lentiviral Transduction in “Human Immune System” Rag2−/−γc −/− Mice". W Methods in Molecular Biology, 87–115. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-60761-421-0_6.
Pełny tekst źródłaEvans, Dorinda. "5. A Challenge to International Neoclassicism". W William Rimmer, 117–64. Cambridge, UK: Open Book Publishers, 2022. http://dx.doi.org/10.11647/obp.0304.05.
Pełny tekst źródłaBuckle, Irina, i Josephine M. Forbes. "The Role of the Receptor for Advanced Glycation Endproducts (RAGE) in Type 1 Diabetes: An Immune Cell Perspective". W Type 1 Diabetes Mellitus [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108528.
Pełny tekst źródłaBrooks, Mary M. "“Rags of Popery”". W In-Between Textiles, 1400–1800. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2023. http://dx.doi.org/10.5117/9789463729086_ch08.
Pełny tekst źródłaStrozier, Charles B., Konstantine Pinteris, Kathleen Kelley i Deborah Cher. "Rage and Aggression". W The New World of Self, 59–70. Oxford University PressNew York, 2022. http://dx.doi.org/10.1093/oso/9780197535226.003.0005.
Pełny tekst źródła"Royal Rage and Private Anger in Ancient Egypt". W The Expression of Emotions in Ancient Egypt and Mesopotamia, 88–102. BRILL, 2020. http://dx.doi.org/10.1163/9789004430761_005.
Pełny tekst źródłaPedersen, Torgeir Rebolledo. "Om stillhet, raseri og rytme". W Stemma og stilla i musikk og litteratur: Festskrift til Magnar Åm, 84–96. Cappelen Damm Akademisk/NOASP, 2022. http://dx.doi.org/10.23865/noasp.158.ch4.
Pełny tekst źródłaAbdul-Ghani, Casarae Lavada. "The Inability to Compromise". W Start a Riot!, 30–53. University Press of Mississippi, 2022. http://dx.doi.org/10.14325/mississippi/9781496840455.003.0002.
Pełny tekst źródłaStreszczenia konferencji na temat "RAG1 expression"
Ge, zheng, Qi Han, Jinlong Ma, Yan Gu, Huihui Song, Malika Kapadia, Sinisa Dovat i Chunhua Song. "Abstract 5507: RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5507.
Pełny tekst źródłade Souza Xavier Costa, Natália, Giovana Da Costa Sigrist, Marisa Dolhnikoff i Luiz Fernando Ferraz Da Silva. "RAGE expression in lung tissue of ARDS and septic patients". W ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2752.
Pełny tekst źródłaVieira, Paula Cristina de Vasconcelos, Adriano de Paula Sabino, Jaqueline Germano de Oliveira, Marcelo Antônio Pascoal Xavier, Annamaria Ravara Vago i Maria Gabrielle de Lima Rocha. "Avaliação de RAP1 como biomarcador da neoplasia intraepitelial cervical". W XIII Congresso da Sociedade Brasileira de DST - IX Congresso Brasileiro de AIDS - IV Congresso Latino Americano de IST/HIV/AIDS. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/dst-2177-8264-202133p067.
Pełny tekst źródłaPerkins, Timothy, Elizabeth Oczypok, Regina Dutz i Tim Oury. "RAGE-dependent VCAM-1 expression in the pulmonary endothelium mediates IL-33 induced asthma pathogenesis". W ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa4915.
Pełny tekst źródłaKasahara, D. I., A. Nicholas, T. Reed, Z. Trilling, M. Branca-Afrazi, H. Hamilton, J. Hegge, J. Hamilton, T. Pei i E. W. Bush. "Silencing RAGE Expression with a Lung-Targeted RNAi Trigger Delivery Platform Suppresses Pulmonary Allergic Inflammation". W American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5013.
Pełny tekst źródłaAI, Cabrera-García, M. Protschka, G. Alber, S. Kather, F. Dengler, U. Müller, JM Steiner i RM Heilmann. "Dysregulation of gastrointestinal RAGE (receptor for advanced glycation end products) expression in dogs with inflammatory bowel disease". W 29. Jahrestagung der FG „Innere Medizin und klinische Labordiagnostik“ der DVG (InnLab) – Teil 2: Poster. Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1723879.
Pełny tekst źródłaMangalmurti, Nilam S., Jessica Friedman, Liang Chuan Wang, Don L. Siegel, Jing Sun, Janet S. Lee i Steven M. Albelda. "Banked RBCs Induce The Expression Of The Receptor For Advanced Glycation Endproducts (RAGE) On Lung Endothelial Cells". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5498.
Pełny tekst źródłaLeckelt, J., F. Thomas, A. Kott, O. Stachs, A. Jünemann, M. Tiedge i S. Baltrusch. "Eine hohe RAGE Expression könnte für das frühzeitige Auftreten von Diabetes mellitus assoziierten neuropathischen Schädigungen der cornealen Nervenfasern verantwortlich sein". W Diabetes Kongress 2018 – 53. Jahrestagung der DDG. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641966.
Pełny tekst źródłaPendyala, S., I. Gorshkova, PV Usatyuk, D. He, Y. Zhao, J. Moitra, S. Kalari, JG Garcia i V. Natarajan. "Nrf2 Regulation of Hyperoxia-Mediated Nox4 Expression and ROS Production in Lung Endothelium: Role of Rac1, MAP Kinases and Redox Status." W American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a3861.
Pełny tekst źródłaWan, Qiaoqiao, Eunhye Cho, Seungman Park, Bumsoo Han, Hiroki Yokota i Sungsoo Na. "Visualizing Chondrocyte Mechanotransduction in 3D". W ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14484.
Pełny tekst źródłaRaporty organizacyjne na temat "RAG1 expression"
Su, Bing. The Role of mTOR Signaling in the Regulation of RAG Expression and Genomic Stability during B Lymphocyte Development. Fort Belvoir, VA: Defense Technical Information Center, maj 2013. http://dx.doi.org/10.21236/ada588301.
Pełny tekst źródła