Artykuły w czasopismach na temat „Radiomics analysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radiomics analysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hu, Shuyi, Xiajie Lyu, Weifeng Li, Xiaohan Cui, Qiaoyu Liu, Xiaoliang Xu, Jincheng Wang, Lin Chen, Xudong Zhang i Yin Yin. "Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)". Contrast Media & Molecular Imaging 2022 (25.06.2022): 1–8. http://dx.doi.org/10.1155/2022/7693631.
Pełny tekst źródłaYin, Yunchao, Derya Yakar, Rudi A. J. O. Dierckx, Kim B. Mouridsen, Thomas C. Kwee i Robbert J. de Haas. "Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging". Diagnostics 12, nr 2 (21.02.2022): 550. http://dx.doi.org/10.3390/diagnostics12020550.
Pełny tekst źródłaGelardi, Fabrizia, Lara Cavinato, Rita De Sanctis, Gaia Ninatti, Paola Tiberio, Marcello Rodari, Alberto Zambelli i in. "The Predictive Role of Radiomics in Breast Cancer Patients Imaged by [18F]FDG PET: Preliminary Results from a Prospective Cohort". Diagnostics 14, nr 20 (17.10.2024): 2312. http://dx.doi.org/10.3390/diagnostics14202312.
Pełny tekst źródłaCinarer, Gokalp, i Bulent Gursel Emiroglu. "Statistical analysis of radiomic features in differentiation of glioma grades". New Trends and Issues Proceedings on Advances in Pure and Applied Sciences, nr 12 (30.04.2020): 68–79. http://dx.doi.org/10.18844/gjpaas.v0i12.4988.
Pełny tekst źródłaChilaca-Rosas, Maria-Fatima, Melissa Garcia-Lezama, Sergio Moreno-Jimenez i Ernesto Roldan-Valadez. "Diagnostic Performance of Selected MRI-Derived Radiomics Able to Discriminate Progression-Free and Overall Survival in Patients with Midline Glioma and the H3F3AK27M Mutation". Diagnostics 13, nr 5 (23.02.2023): 849. http://dx.doi.org/10.3390/diagnostics13050849.
Pełny tekst źródłaHu, Yumin, Qiaoyou Weng, Haihong Xia, Tao Chen, Chunli Kong, Weiyue Chen, Peipei Pang, Min Xu, Chenying Lu i Jiansong Ji. "A radiomic nomogram based on arterial phase of CT for differential diagnosis of ovarian cancer". Abdominal Radiology 46, nr 6 (czerwiec 2021): 2384–92. http://dx.doi.org/10.1007/s00261-021-03120-w.
Pełny tekst źródłaLei, Chu-qian, Wei Wei, Zhen-yu Liu, Qian-Qian Xiong, Ci-Qiu Yang, Teng Zhu, Liu-Lu Zhang, Mei Yang, Jie Tian i Kun Wang. "Radiomics analysis for pathological classification prediction in BI-RADS category 4 mammographic calcifications." Journal of Clinical Oncology 37, nr 15_suppl (20.05.2019): e13055-e13055. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e13055.
Pełny tekst źródłaWei, Zhi-Yao, Zhe Zhang, Dong-Li Zhao, Wen-Ming Zhao i Yuan-Guang Meng. "Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer". World Journal of Clinical Cases 12, nr 26 (16.09.2024): 5908–21. http://dx.doi.org/10.12998/wjcc.v12.i26.5908.
Pełny tekst źródłaKalasauskas, Darius, Michael Kosterhon, Naureen Keric, Oliver Korczynski, Andrea Kronfeld, Florian Ringel, Ahmed Othman i Marc A. Brockmann. "Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors". Cancers 14, nr 3 (7.02.2022): 836. http://dx.doi.org/10.3390/cancers14030836.
Pełny tekst źródłaHuang, Yen-Cho, Shih-Ming Huang, Jih-Hsiang Yeh, Tung-Chieh Chang, Din-Li Tsan, Chien-Yu Lin i Shu-Ju Tu. "Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy". Diagnostics 14, nr 9 (30.04.2024): 941. http://dx.doi.org/10.3390/diagnostics14090941.
Pełny tekst źródłaHarrison, Rebecca, Bryce Wei Quan Tan, Hong Qi Tan, Lloyd Tan, Mei Chin Lim, Clement Yong, John Kuo i Shelli Kesler. "NIMG-32. THE PREDICTIVE CAPACITY OF PRE-OPERATIVE IMAGING ANALYSIS IN DIFFUSE GLIOMA: A COMPARISON OF CONNECTOMICS, RADIOMICS, AND CLINICAL PREDICTIVE MODELS". Neuro-Oncology 22, Supplement_2 (listopad 2020): ii154—ii155. http://dx.doi.org/10.1093/neuonc/noaa215.645.
Pełny tekst źródłaChiu, Hwa-Yen, Ting-Wei Wang, Ming-Sheng Hsu, Heng-Shen Chao, Chien-Yi Liao, Chia-Feng Lu, Yu-Te Wu i Yuh-Ming Chen. "Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis". Cancers 16, nr 3 (31.01.2024): 615. http://dx.doi.org/10.3390/cancers16030615.
Pełny tekst źródłaGangil, Tarun, Krishna Sharan, B. Dinesh Rao, Krishnamoorthy Palanisamy, Biswaroop Chakrabarti i Rajagopal Kadavigere. "Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning". PLOS ONE 17, nr 12 (15.12.2022): e0277168. http://dx.doi.org/10.1371/journal.pone.0277168.
Pełny tekst źródłaSun, Zongqiong, Linfang Jin, Shuai Zhang, Shaofeng Duan, Wei Xing i Shudong Hu. "Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features". Journal of X-Ray Science and Technology 29, nr 4 (27.07.2021): 675–86. http://dx.doi.org/10.3233/xst-210888.
Pełny tekst źródłaMiccò, Maura, Benedetta Gui, Luca Russo, Luca Boldrini, Jacopo Lenkowicz, Stefania Cicogna, Francesco Cosentino i in. "Preoperative Tumor Texture Analysis on MRI for High-Risk Disease Prediction in Endometrial Cancer: A Hypothesis-Generating Study". Journal of Personalized Medicine 12, nr 11 (7.11.2022): 1854. http://dx.doi.org/10.3390/jpm12111854.
Pełny tekst źródłaWang, Yong, Liang Zhang, Lin Qi, Xiaoping Yi, Minghao Li, Mao Zhou, Danlei Chen i in. "Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms". Journal of Oncology 2021 (11.10.2021): 1–17. http://dx.doi.org/10.1155/2021/8615450.
Pełny tekst źródłaLee, Hyunjong, Seung Hwan Moon, Jung Yong Hong, Jeeyun Lee i Seung Hyup Hyun. "A Machine Learning Approach Using FDG PET-Based Radiomics for Prediction of Tumor Mutational Burden and Prognosis in Stage IV Colorectal Cancer". Cancers 15, nr 15 (28.07.2023): 3841. http://dx.doi.org/10.3390/cancers15153841.
Pełny tekst źródłaGill, Andrew B., Leonardo Rundo, Jonathan C. M. Wan, Doreen Lau, Jeries P. Zawaideh, Ramona Woitek, Fulvio Zaccagna i in. "Correlating Radiomic Features of Heterogeneity on CT with Circulating Tumor DNA in Metastatic Melanoma". Cancers 12, nr 12 (24.11.2020): 3493. http://dx.doi.org/10.3390/cancers12123493.
Pełny tekst źródłaChilaca-Rosas, Maria-Fatima, Manuel-Tadeo Contreras-Aguilar, Melissa Garcia-Lezama, David-Rafael Salazar-Calderon, Raul-Gabriel Vargas-Del-Angel, Sergio Moreno-Jimenez, Patricia Piña-Sanchez, Raul-Rogelio Trejo-Rosales, Felipe-Alfredo Delgado-Martinez i Ernesto Roldan-Valadez. "Identification of Radiomic Signatures in Brain MRI Sequences T1 and T2 That Differentiate Tumor Regions of Midline Gliomas with H3.3K27M Mutation". Diagnostics 13, nr 16 (14.08.2023): 2669. http://dx.doi.org/10.3390/diagnostics13162669.
Pełny tekst źródłaStoyanova, Radka, Olmo Zavala-Romero, Deukwoo Kwon, Adrian L. Breto, Isaac R. Xu, Ahmad Algohary, Mohammad Alhusseini i in. "Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI". Cancers 15, nr 21 (31.10.2023): 5240. http://dx.doi.org/10.3390/cancers15215240.
Pełny tekst źródłaLucia, François, Vincent Bourbonne, Dimitris Visvikis, Omar Miranda, Dorothy M. Gujral, Dominique Gouders, Gurvan Dissaux i in. "Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer". Journal of Personalized Medicine 11, nr 5 (11.05.2021): 398. http://dx.doi.org/10.3390/jpm11050398.
Pełny tekst źródłaWei, JingWei, Jie Tian, Sirui Fu i Ligong Lu. "Noninvasive prediction of future macrovascular invasion occurrence in hepatocellular carcinoma based on quantitative imaging analysis: A multi-center study." Journal of Clinical Oncology 37, nr 15_suppl (20.05.2019): e14623-e14623. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14623.
Pełny tekst źródłaCosta, Guido, Lara Cavinato, Chiara Masci, Francesco Fiz, Martina Sollini, Letterio Salvatore Politi, Arturo Chiti i in. "Virtual Biopsy for Diagnosis of Chemotherapy-Associated Liver Injuries and Steatohepatitis: A Combined Radiomic and Clinical Model in Patients with Colorectal Liver Metastases". Cancers 13, nr 12 (20.06.2021): 3077. http://dx.doi.org/10.3390/cancers13123077.
Pełny tekst źródłaBaine, Michael, Justin Burr, Qian Du, Chi Zhang, Xiaoying Liang, Luke Krajewski, Laura Zima, Gerard Rux, Chi Zhang i Dandan Zheng. "The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients". Journal of Imaging 7, nr 2 (28.01.2021): 17. http://dx.doi.org/10.3390/jimaging7020017.
Pełny tekst źródłaBioletto, Fabio, Nunzia Prencipe, Alessandro Maria Berton, Luigi Simone Aversa, Daniela Cuboni, Emanuele Varaldo, Valentina Gasco, Ezio Ghigo i Silvia Grottoli. "Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives". Journal of Clinical Medicine 13, nr 2 (7.01.2024): 336. http://dx.doi.org/10.3390/jcm13020336.
Pełny tekst źródłaSolopova, A. E., J. V. Nosova i B. B. Bendzhenova. "Magnetic resonance imaging in cervical cancer: current opportunities of radiomics analysis and prospects for its further developmen". Obstetrics, Gynecology and Reproduction 17, nr 4 (6.09.2023): 500–511. http://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2023.440.
Pełny tekst źródłaZhang, Junjie, Ligang Hao, Min Li, Qian Xu i Gaofeng Shi. "CT Radiomics Combined With Clinicopathological Features to Predict Invasive Mucinous Adenocarcinoma in Patients With Lung Adenocarcinoma". Technology in Cancer Research & Treatment 22 (styczeń 2023): 153303382311743. http://dx.doi.org/10.1177/15330338231174306.
Pełny tekst źródłaAbdurixiti, Meilinuer, Mayila Nijiati, Rongfang Shen, Qiu Ya, Naibijiang Abuduxiku i Mayidili Nijiati. "Current progress and quality of radiomic studies for predicting EGFR mutation in patients with non-small cell lung cancer using PET/CT images: a systematic review". British Journal of Radiology 94, nr 1122 (1.06.2021): 20201272. http://dx.doi.org/10.1259/bjr.20201272.
Pełny tekst źródłaSchmidt, Ian A., i Elena D. Kotina. "Applying radiomics in computed tomography data analysis to predict sarcopenia". Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 20, nr 3 (2024): 376–90. http://dx.doi.org/10.21638/spbu10.2024.306.
Pełny tekst źródłaYounan, N., H. Douzane, A. Duran-Pena, L. Nichelli, Y. Garcilazo, C. Dehais, F. Ducray i in. "OS9.2 Radiomics analysis of lower-grade gliomas, a POLA Network study". Neuro-Oncology 21, Supplement_3 (sierpień 2019): iii18. http://dx.doi.org/10.1093/neuonc/noz126.060.
Pełny tekst źródłaCamastra, Chiara, Giovanni Pasini, Alessandro Stefano, Giorgio Russo, Basilio Vescio, Fabiano Bini, Franco Marinozzi i Antonio Augimeri. "Development and Implementation of an Innovative Framework for Automated Radiomics Analysis in Neuroimaging". Journal of Imaging 10, nr 4 (22.04.2024): 96. http://dx.doi.org/10.3390/jimaging10040096.
Pełny tekst źródłaBadesha, Arshpreet Singh, Russell Frood, Marc A. Bailey, Patrick M. Coughlin i Andrew F. Scarsbrook. "A Scoping Review of Machine-Learning Derived Radiomic Analysis of CT and PET Imaging to Investigate Atherosclerotic Cardiovascular Disease". Tomography 10, nr 9 (3.09.2024): 1455–87. http://dx.doi.org/10.3390/tomography10090108.
Pełny tekst źródłaJiang, Yan-Wei, Xiong-Jie Xu, Rui Wang i Chun-Mei Chen. "Radiomics analysis based on lumbar spine CT to detect osteoporosis". European Radiology, 30.04.2022. http://dx.doi.org/10.1007/s00330-022-08805-4.
Pełny tekst źródłaWu, Hongyu, Ban Luo, Yali Zhao, Gang Yuan, Qiuxia Wang, Ping Liu, Linhan Zhai, Wenzhi Lv i Jing Zhang. "Radiomics analysis of the optic nerve for detecting dysthyroid optic neuropathy, based on water-fat imaging". Insights into Imaging 13, nr 1 (24.09.2022). http://dx.doi.org/10.1186/s13244-022-01292-7.
Pełny tekst źródłaSantinha, João, Daniel Pinto dos Santos, Fabian Laqua, Jacob J. Visser, Kevin B. W. Groot Lipman, Matthias Dietzel, Michail E. Klontzas, Renato Cuocolo, Salvatore Gitto i Tugba Akinci D’Antonoli. "ESR Essentials: radiomics—practice recommendations by the European Society of Medical Imaging Informatics". European Radiology, 25.10.2024. http://dx.doi.org/10.1007/s00330-024-11093-9.
Pełny tekst źródłaCai, Du, Xin Duan, Wei Wang, Ze-Ping Huang, Qiqi Zhu, Min-Er Zhong, Min-Yi Lv i in. "A Metabolism-Related Radiomics Signature for Predicting the Prognosis of Colorectal Cancer". Frontiers in Molecular Biosciences 7 (7.01.2021). http://dx.doi.org/10.3389/fmolb.2020.613918.
Pełny tekst źródłaMou, Meiyan, Ruizhi Gao, Yuquan Wu, Peng Lin, Hongxia Yin, Fenghuan Chen, Fen Huang, Rong Wen, Hong Yang i Yun He. "Endoscopic Rectal Ultrasound‐Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer". Journal of Ultrasound in Medicine, 11.11.2023. http://dx.doi.org/10.1002/jum.16369.
Pełny tekst źródłaShaheen, Asma, Syed Talha Bukhari, Maria Nadeem, Stefano Burigat, Ulas Bagci i Hassan Mohy-ud-Din. "Overall Survival Prediction of Glioma Patients With Multiregional Radiomics". Frontiers in Neuroscience 16 (7.07.2022). http://dx.doi.org/10.3389/fnins.2022.911065.
Pełny tekst źródłaLi, Yue, Huaibi Huo, Hui Liu, Yue Zheng, Zhaoxin Tian, Xue Jiang, Shiqi Jin i in. "Coronary CTA-based radiomic signature of pericoronary adipose tissue predict rapid plaque progression". Insights into Imaging 15, nr 1 (20.06.2024). http://dx.doi.org/10.1186/s13244-024-01731-7.
Pełny tekst źródłaLi, Mei hua, Long Liu, Lian Feng, Li jun Zheng, Qin mei Xu, Yin juan Zhang, Fu rong Zhang i Lin na Feng. "Prediction of cervical lymph node metastasis in solitary papillary thyroid carcinoma based on ultrasound radiomics analysis". Frontiers in Oncology 14 (25.01.2024). http://dx.doi.org/10.3389/fonc.2024.1291767.
Pełny tekst źródłaYang, Qinzhu, Haofan Huang, Guizhi Zhang, Nuoqing Weng, Zhenkai Ou, Meili Sun, Huixing Luo, Xuhui Zhou, Yi Gao i Xiaobin Wu. "Contrast‐enhanced CT‐based radiomic analysis for determining the response to anti‐programmed death‐1 therapy in esophageal squamous cell carcinoma patients: A pilot study". Thoracic Cancer, 24.09.2023. http://dx.doi.org/10.1111/1759-7714.15117.
Pełny tekst źródłaMeng, Huan, Tian-Da Wang, Li-Yong Zhuo, Jia-Wei Hao, Lian-yu Sui, Wei Yang, Li-Li Zang, Jing-Jing Cui, Jia-Ning Wang i Xiao-Ping Yin. "Quantitative radiomics analysis of imaging features in adults and children Mycoplasma pneumonia". Frontiers in Medicine 11 (20.05.2024). http://dx.doi.org/10.3389/fmed.2024.1409477.
Pełny tekst źródłaWu, Ting, Chen Gao, Xinjing Lou, Jun Wu, Maosheng Xu i Linyu Wu. "Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis". BMC Pulmonary Medicine 24, nr 1 (18.05.2024). http://dx.doi.org/10.1186/s12890-024-03020-x.
Pełny tekst źródłaJiang, Yan-Wei, Xiong-Jei Xu, Rui Wang i Chun-Mei Chen. "Efficacy of non-enhanced computer tomography-based radiomics for predicting hematoma expansion: A meta-analysis". Frontiers in Oncology 12 (10.01.2023). http://dx.doi.org/10.3389/fonc.2022.973104.
Pełny tekst źródłaWang, Jincheng, Shengnan Tang, Jin Wu, Shanshan Xu, Qikai Sun, Zheyu Zhou, Xiaoliang Xu i in. "Radiomic features at Contrast-enhanced CT Predict Virus-driven Liver Fibrosis: A Multi-institutional Study". Clinical and Translational Gastroenterology, 27.05.2024. http://dx.doi.org/10.14309/ctg.0000000000000712.
Pełny tekst źródłaPeng, Jiao, Zhen Tang, Tao Li, Xiaoyu Pan, Lijuan Feng i Liling Long. "Contrast-enhanced computed tomography-based radiomics nomogram for predicting HER2 status in urothelial bladder carcinoma". Frontiers in Oncology 14 (14.08.2024). http://dx.doi.org/10.3389/fonc.2024.1427122.
Pełny tekst źródłaYang, Bin, Li Zhou, Jing Zhong, Tangfeng Lv , Ang Li, Lu Ma, Jian Zhong i in. "Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer". Respiratory Research 22, nr 1 (28.06.2021). http://dx.doi.org/10.1186/s12931-021-01780-2.
Pełny tekst źródłaKawahara, Daisuke, Nobuki Imano, Riku Nishioka, Kouta Ogawa, Tomoki Kimura, Taku Nakashima, Hiroshi Iwamoto, Kazunori Fujitaka, Noboru Hattori i Yasushi Nagata. "Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis". Scientific Reports 11, nr 1 (10.08.2021). http://dx.doi.org/10.1038/s41598-021-95643-x.
Pełny tekst źródłaZhang, Simiao, Juan Hou, Wenwen Xia, Zicheng Zhao, Min Xu, Shouxian Li, Chunhui Xu, Tieliang Zhang i Wenya Liu. "Value of intralesional and perilesional radiomics for predicting the bioactivity of hepatic alveolar echinococcosis". Frontiers in Oncology 14 (27.06.2024). http://dx.doi.org/10.3389/fonc.2024.1389177.
Pełny tekst źródłaTang, Shengnan, Jin Wu, Shanshan Xu, Qi Li i Jian He. "Clinical-radiomic analysis for non-invasive prediction of liver steatosis on non-contrast CT: A pilot study". Frontiers in Genetics 14 (20.03.2023). http://dx.doi.org/10.3389/fgene.2023.1071085.
Pełny tekst źródła