Gotowa bibliografia na temat „Radio waves (Astronomy)”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radio waves (Astronomy)”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Radio waves (Astronomy)"

1

Ensslin, T. A. "ASTRONOMY: Radio Traces of Cosmic Shock Waves". Science 314, nr 5800 (3.11.2006): 772–73. http://dx.doi.org/10.1126/science.1133949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Yang, Guang Pu, Liang Dong, Le Sheng He, Fa Xin Shen, Bin Tian i Sheng Yang Li. "A New Platform for Radio Astronomy Science Education". Advances in Science and Technology 105 (kwiecień 2021): 179–83. http://dx.doi.org/10.4028/www.scientific.net/ast.105.179.

Pełny tekst źródła
Streszczenie:
Radio astronomy telescope can get information from invisible universe by receiving electromagnetic waves. Difference from optical telescopes, there exists many difficulties for making the public understanding the radio astronomy phenomenon. In this paper, we will introduce a new platform for radio astronomy science popularization education in order to help public know radio telescope and radio astronomy. The platform consists of a 0.8meter parabolic antenna, a wide bandwidth low noise amplifier (LNA) and a Software Defined Radio (SDR) terminal. Based on SDR terminal which covers the band from 70MHz to 6GHz, we can get some strong emissions such as the Neutral hydrogen, solar radio bursts and so on in this band. People can carry out many radio astronomy experiments focusing on science popularization by this platform. This new science education tool can interest high school students in science and technology, also students can understand how radio telescopes works.
Style APA, Harvard, Vancouver, ISO itp.
3

Spangler, S. R. "Interstellar Magnetohydrodynamic Waves as Revealed by Radio Astronomy". Symposium - International Astronomical Union 140 (1990): 176. http://dx.doi.org/10.1017/s0074180900189880.

Pełny tekst źródła
Streszczenie:
The plasma density fluctuations responsible for interstellar scintillations occur on the same scales as interstellar magnetohydrodynamic waves (Alfvén waves), which are responsible for many important processes such as the acceleration of the cosmic rays. This suggests that these density fluctuations represent a compressive component of MHD waves, and raises the exciting possibility that radioastronomical observations can provide more or less direct measurements of interstellar microphysical processes. Extraction of MHD wave properties from the radio scattering measurements requires a sound theoretical understanding of the relationship between the magnetic field in an MHD wave and the corresponding plasma density perturbation. We present a plasma kinetic theory treatment of the density compression associated with an MHD wave field. The density perturbation may be expressed as the sum of three terms. These terms are proportional to the wave amplitude, wave intensity, and sine transform of the wave intensity, respectively. The coefficients of these three terms are functions of the plasma β, the electron-to-ion temperature ratio, and the angle of wave propagation with respect to the large scale magnetic field. This relation can serve as the basis for inferring the MHD wave field given a radio scattering measurement of the density fluctuation statistics. In an attempt to apply these ideas to the interstellar plasma turbulence, we have made VLBI angular broadening measurements of sources whose lines of sight pass close to supernova remnants. The intensity of MHD waves is expected to be high in the vicinity of the shock waves associated with supernova remnants. We do not yet have unambiguous evidence of enhanced radio wave scattering due to shock-associated MHD waves. However, we have found anomalously high scattering for the source CL4, whose line of sight passes through the Cygnus Loop.
Style APA, Harvard, Vancouver, ISO itp.
4

GRAHAM - SMITH, FRANCIS. "The big ears of radio astronomy". European Review 10, nr 2 (maj 2002): 285–300. http://dx.doi.org/10.1017/s1062798702000200.

Pełny tekst źródła
Streszczenie:
The special value of radio astronomy lies in the probing of extreme conditions in the universe, including the highest energies and the lowest temperatures. Radio waves can penetrate clouds of gas and dust to reveal objects in the universe and, in particular, in our Galaxy that cannot be seen by visible light. To achieve the highest resolution, radio telescopes in widely separate parts of our globe combine their reception to produce a synthesized image. This is a splendid example of international collaboration. Among the images visualized are pulsars, derived from the remnants of supernovae explosions, and quasar sources powered by black holes.
Style APA, Harvard, Vancouver, ISO itp.
5

Rieu, Nguyen Quang. "Simple Instruments in Radio Astronomy". Transactions of the International Astronomical Union 24, nr 3 (2001): 255–65. http://dx.doi.org/10.1017/s0251107x00000924.

Pełny tekst źródła
Streszczenie:
AbstractRadio astronomy has a major role in the study of the universe. The spiral structure of our Galaxy and the cosmic background radiation were first detected, and the dense component of interstellar gas is studied, at radio wavelengths. COBE revealed very weak temperature fluctuations in the microwave background, considered to be the seeds of galaxies and clusters of galaxies. Most electromagnetic radiation from outer space is absorbed or reflected by the Earth’s atmosphere, except in two narrow spectral windows: the visible-near-infrared and the radio, which are nearly transparent. Centimetre and longer radio waves propagate almost freely in space; observations of them are practically independent of weather. Turbulence in our atmosphere does not distort the wavefront, which simplifies the building of radio telescopes, because no devices are needed to correct for it. Observations at these wavelengths can be made in high atmospheric humidity, or where the sky is not clear enough for optical telescopes.Simple instruments operating at radio wavelengths can be built at low cost in tropical countries, to teach students and to familiarize them with radio astronomy. We describe a two-antennae radio interferometer and a single-dish radio telescope operating at centimetre wavelengths. The Sun and strong synchrotron radio-sources, like Cassiopeia A and Cygnus A, are potential targets.
Style APA, Harvard, Vancouver, ISO itp.
6

Centrella, Joan, Samaya Nissanke i Roy Williams. "Gravitational Waves and Time-Domain Astronomy". Proceedings of the International Astronomical Union 7, S285 (wrzesień 2011): 191–98. http://dx.doi.org/10.1017/s1743921312000592.

Pełny tekst źródła
Streszczenie:
AbstractThe gravitational-wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high-frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time-domain astronomy. In the decade, space-based observations of low-frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational-wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Style APA, Harvard, Vancouver, ISO itp.
7

RYABOV, M. I., i L. I. SOBITNIAK. "Tidal phenomena in the Earth’s upper atmosphere". Astronomical and Astrophysical Transactions, Volume 33, Numéro 1 (1.07.2022): 37–44. http://dx.doi.org/10.17184/eac.6468.

Pełny tekst źródła
Streszczenie:
From 1987 to the present, the radio flux of powerful galactic and extragalactic radio sources is monitored at decameter waves at the URAN-4 radio telescope of the Odessa Observatory of the Radio Astronomy Institute of the National Academy of Sciences of Ukraine. The work is based on revealing the nature of unusual records of radio sources that were not associated with the presence of interference in the decameter radio band. Changes of fluxes of radiation sources at decameter waves are determined by the condition of an ionosphere as a result of variation in space weather and tidal events. When radio sources are observed through a tidal wave, a “plasma lens” effect is realized in the ionosphere. Depending on the position of the radio source relative to the tidal wave, the radiation wave front is sought. As a result, various effects are realized: strong focusing, intense flickering or “blurred” recording of the radio source. This effect was originally reflected in earlier works [1]. In this paper the analog records of radio sources (1987-1990) and digital (1998-2004) are considered and various tidal effects were clarified. Based on the results of measurements, the angular dimensions of the tidal wave, reaching 60 degrees, were determined. Radio astronomy observations in the decameter range at the URAN-4 radio telescope are an effective method for studying tidal phenomena in the Earth's upper atmosphere.
Style APA, Harvard, Vancouver, ISO itp.
8

Wielebinski, R. "The history of polarisation measurements: their role in studies of magnetic fields". Proceedings of the International Astronomical Union 10, H16 (sierpień 2012): 383. http://dx.doi.org/10.1017/s1743921314011521.

Pełny tekst źródła
Streszczenie:
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the ‘E’ vector normal to the magnetic field. The Faraday Effect rotates the ‘E’ vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Style APA, Harvard, Vancouver, ISO itp.
9

Chalmers, Matthew. "Radio waves measure body water". Physics World 16, nr 3 (marzec 2003): 26–27. http://dx.doi.org/10.1088/2058-7058/16/3/38.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Adawi, I. "Centennial of Hertz’ radio waves". American Journal of Physics 57, nr 2 (luty 1989): 125–27. http://dx.doi.org/10.1119/1.16106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Radio waves (Astronomy)"

1

Carozzi, Tobia. "Radio waves in the ionosphere : Propagation, generation and detection". Doctoral thesis, Uppsala universitet, Institutionen för astronomi och rymdfysik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1184.

Pełny tekst źródła
Streszczenie:
We discuss various topics concerning the propagation, generation, and detec-tionof high-frequency (HF) radio waves in the Earth's ionosphere. With re-gardsto propagation, we derive a full wave Hamiltonian and a polarization evo-lutionequation for electromagnetic waves in a cold, stratified magnetoplasma.With regards to generation, we will be concerned with three experiments con-ducted at the ionosphere- radio wave interaction research facilities at Sura, Rus-siaand Tromsø, Norway. These facilities operate high power HF transmittersthat can inject large amplitude electromagnetic waves into the ionosphere andexcite numerous nonlinear processes. In an experiment conducted at the Surafacility, we were able to measure the full state of polarization of stimulatedelectromagnetic emissions for the first time. It is expected that by using thetechnique developed in this experiment it will be possible to study nonlinearpolarization effects on powerful HF pump waves in magnetoplasmas in the fu-ture.In another experiment conducted at the Sura facility, the pump frequencywas swept automatically allowing rapid, high-resolution measurements of SEEdependence on pump frequency with minimal variations in ionospheric condi-tions.At the Tromsø facility we discovered by chance a highly variable, pumpinduced, HF emission that most probably emanated from pump excited spo-radicE. Regarding detection, we have proposed a set of Stokes parametersgeneralized to three dimension space; and we have used these parameters in aninvention to detect the incoming direction of electromagnetic waves of multiplefrequencies from a single point measurement.
Style APA, Harvard, Vancouver, ISO itp.
2

Munns, David P. D. ""Wizards of the micro-waves" a history of the radio astronomy community /". Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/308073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bignall, Hayley Emma. "Radio variability and interstellar scintillation of blazars". [Adelaide : H.E. Bignall, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phb5931.pdf.

Pełny tekst źródła
Streszczenie:
Bibliography: leaves 191-202. 1. Introduction -- 2. Instrumentation and calibration -- 3. A radio monitoring program for southern blazars -- 4. Analysis of long-term blazar radio variability -- 5. Probing microarcsecond-scale structure using interstellar scintillation -- 6. The rapid scintillator, PKS 1257-326 -- 7. Conclusions and scope for further work.
Style APA, Harvard, Vancouver, ISO itp.
4

Martínez-Sansigre, Alejo. "Distant obscured quasars". Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:a764a410-4464-4b92-831d-34e8a383d78f.

Pełny tekst źródła
Streszczenie:
This thesis presents a study of high-redshift obscured (type-2) quasars, selected at mid-infrared and radio wavelengths. This population had remained elusive, even to hard X-ray surveys, and in Chapter 2 I compare the selection of type-2 quasars in X-ray and mid-infrared surveys, as well as explaining the criteria I will use to search for these objects at z ~ 2, around the peak in the unobscured (type-1) quasar activity. Chapter 3, presents a sample of radio-intermediate type-2 quasars selected from the criteria de- scribed in Chapter 2. Optical spectroscopy shows indeed that at least half of the objects have the characteristic narrow emission lines, and lie around the expected redshift of z = 2. The other half of the objects are consistent with also being type-2 quasars at similar redshifts, although no emission lines are visible. In Chapter 4,1 discuss the possibility of two types of obscured quasars, some obscured by a dusty torus and some by a dusty host galaxy, to explain the lack of emission lines in half of the sample. I model the number of type-1 quasars expected to follow similar selection criteria and at the same redshifts as our type-2 quasars, and find that the obscured quasars outnumber the unobscured by a ~2-3:1 ratio. I conclude that most supermassive black hole growth is obscured by dust. When comparing this to predictions from unified schemes, I find that this result is only consistent with the schemes provided host-obscuration is indeed happening. The lower ratio of type-2 to type-1 quasars inferred from X-ray surveys (~1:1) suggests that some of the type-2 quasars in this sample might be Compton thick. Radio data taken at three frequencies, are presented in Chapter 5, to study the spectral properties and intrinsic luminosities of our sample. I show that some type-2 quasars have flat radio spectra, which is inconsistent with obscuration by the torus, but consistent with host-obscuration. Some gigahertz-peaked spectra, characteristic of young radio jets, are present, but the majority of the sources have very steep spectra. These steep spectral indices can be explained by active developed jets in which continuous injection of electrons is accompanied by inverse-Compton losses against the cosmic microwave background. In Chapter 6, I select a similar sample of type-2 quasars in a different field, where X-ray data are available. The selection criteria are kept identical, except for the radio flux density cut, which is lowered. This is expected to introduce significant numbers of starburst contaminants. To filter these out, and due to a lack of spectroscopy, I use a bayesian method to fit the spectral energy distributions, obtain photometric redshifts, and select between a quasar and a starburst model. I measure the X-ray properties for the resultant sample of type-2 quasars. The entire sample is found to be Compton-thick, and repeating the modelling of Chapter 4, I find that the population of Compton-thick quasars is at least comparable to the population of unobscured quasars, and probably larger.
Style APA, Harvard, Vancouver, ISO itp.
5

Botai, Ondego Joel. "Ionospheric total electron content variability and its influence in radio astronomy". Thesis, Rhodes University, 2006. http://hdl.handle.net/10962/d1005258.

Pełny tekst źródła
Streszczenie:
Ionospheric phase delays of radio signals from Global Positioning System (GPS) satellites have been used to compute ionospheric Total Electron Content (TEC). An extended Chapman profle model is used to estimate the electron density profles and TEC. The Chapman profle that can be used to predict TEC over the mid-latitudes only applies during day time. To model night time TEC variability, a polynomial function is fitted to the night time peak electron density profles derived from the online International Reference Ionosphere (IRI) 2001. The observed and predicted TEC and its variability have been used to study ionospheric in°uence on Radio Astronomy in South Africa region. Di®erential phase delays of the radio signals from Radio Astronomy sources have been simulated using TEC. Using the simulated phase delays, the azimuth and declination o®sets of the radio sources have been estimated. Results indicate that, pointing errors of the order of miliarcseconds (mas) are likely if the ionospheric phase delays are not corrected for. These delays are not uniform and vary over a broad spectrum of timescales. This implies that fast frequency (referencing) switching, closure phases and fringe ¯tting schemes for ionospheric correction in astrometry are not the best option as they do not capture the real state of the ionosphere especially if the switching time is greater than the ionospheric TEC variability. However, advantage can be taken of the GPS satellite data available at intervals of a second from the GPS receiver network in South Africa to derive parameters which could be used to correct for the ionospheric delays. Furthermore GPS data can also be used to monitor the occurrence of scintillations, (which might corrupt radio signals) especially for the proposed, Square Kilometer Array (SKA) stations closer to the equatorial belt during magnetic storms and sub-storms. A 10 minute snapshot of GPS data recorded with the Hermanus [34:420 S, 19:220 E ] dual frequency receiver on 2003-04-11 did not show the occurrence of scintillations. This time scale is however too short and cannot be representative. Longer time scales; hours, days, seasons are needed to monitor the occurrence of scintillations.
Style APA, Harvard, Vancouver, ISO itp.
6

Joiner, Joanna. "Millimeter-wave spectra of the jovian planets". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/15641.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cole, Robert Harry. "Gravitational waves from extreme-mass-ratio inspirals". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Padullés, Rulló Ramon. "Precipitation measurements with polarimetric radio occultations". Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/404380.

Pełny tekst źródła
Streszczenie:
In 2009, the Spanish Ministry of Science and Innovation approved a proposal to modify the Global Positioning System (GPS) receiver and to allocate a Polarimetric (Pol) Radio Occultation (RO) antenna in the Spanish PAZ satellite. PAZ became an opportunity to test the new Pol-RO concept, which aims to capture ROs using a two orthogonal linear polarization antenna. The experiment has been named Radio Occultations and Heavy Precipitation with PAZ (ROHP-PAZ). The objective is to measure the phase difference between the horizontal and the vertical components of the incoming electromagnetic field that is induced when heavy precipitation flattened raindrops are present in the ray-path. This effect, widely studied in weather radar community, will be measured from space using GNSS signals for the first time with PAZ, which is planned to be launched in 2017. The main objective of this new concept is to enhance the RO capabilities by providing vertical precipitation information along with the current standard RO thermodynamic products (i.e. temperature, pressure and moisture). Until now, no other observing system has been able to provide simultaneous thermodynamic and precipitation information under extreme conditions. The high vertical resolution, global coverage and all-weather capability properties of the RO observations combined with vertical indication of precipitation intensity can be of great value for heavy rain characterization, and therefore for climate and weather forecast and research. The theoretical background for the technique, its feasibility and applications have been assessed in this dissertation. The theoretical basis has been developed combining electromagnetic propagation theory and cloud and precipitation microphysics. Forward scattering simulations at L-band have been obtained in order to relate the microphysics parameters with the expected Pol-RO observables. The feasibility has been addressed using coincident (in space and time) RO profiles and space-based precipitation observations. Such simultaneous observations allow for the characterization of actual RO measurements according to the coincident precipitation information. Finally, the applications have been investigated through realistic end-to-end simulations of the Pol-RO observations, which provide the anticipated Pol-RO products for different precipitation situations, regions, and seasons. Before the launch of the satellite, a field campaign has been conducted with the aim of starting the characterization of the polarimetric measurements. The engineering model of the PAZ antenna was placed at the top of a mountain peak in order to capture, for the first time, linear polarimetric GNSS signals at low grazing angle. This campaign has been useful to start identifying the hardware internal effects and unexpected precipitation features that will be affecting the Pol-RO observations. These effects have been incorporated to the simulations, hence providing valuable feedback to obtain more realistic Pol-RO products. Besides feedback, the data from the field campaign have shown the first observational evidence that precipitation and other hydrometeors induce a noticeable effect on the GNSS polarimetric signals. All these exercises yielded several relevant results. The noise level analysis from actual RO observations sensing precipitation scenarios has allowed to set a detectability threshold for the technique, indicating that a high percentage of moderate to heavy precipitation events will be detected with PAZ. Nevertheless, the integrated nature of the Pol-RO observable does not allow to distinguish between the contributions from the rain's intensity and extension, leaving an ambiguity in the provided product. In an attempt to solve such ambiguity, a tomographic approach has been proposed, which has yielded promising theoretical results. Moreover, it has been shown how the Pol-RO observables can be linked to physical precipitation parameters, such as the along-ray averaged rain rate, in a probabilistic way. The end-to-end simulation has also revealed that the ionosphere will induce a non-negligible depolarization, that will require calibration. Finally, the collocated data has shown the potential applications for Pol-ROs products.
Obtenir mesures simultànies de l’estat termodinàmic de l’atmosfera i de precipitació ha esdevingut un repte per la comunitat científica. Les missions espacials dedicades a obtenir perfils termodinàmics de l’atmosfera tenen problemes amb la presència de núvols gruixuts, ja que el medi esdevé opac a la radiació infraroja (que és la banda de l’espectre electromagnètic en la qual operen). Alternativament, es poden utilitzar radiosondes. Les radiosondes obtenen perfils termodinàmics de l’atmosfera amb molt alta resolució vertical, però tenen l’inconvenient que el seu llançament necessita certa infraestructura, i per tant les zones més remotes en queden al marge. Això inclou pràcticament la totalitat dels mars i oceans, i moltes zones sub-desenvolupades. Per tant, moltes de les zones amb precipitació extrema no poden ser caracteritzades amb aquesta tècnica. A més a més, la resolució temporal acostuma a ser molt baixa, ja que no se’n poden llençar moltes al dia degut a l’elevat cost econòmic que suposaria. Per altra banda, els radars que mesuren les estructures en tres dimensions de la precipitació no tenen la capacitat d’obtenir perfils de temperatura o pressió. Les estacions meteorològiques, que poden ser molt nombroses en segons quins territoris, estan limitades a mesures en superfície, i altra vegada, mars, oceans i regions sub-desenvolupades en queden al marge. Amb tot, les Radio Ocultacions Polarimètriques emergeixen com una tècnica a tenir en compte a l’hora de caracteritzar precipitació extrema. La seva cobertura global, alta resolució vertical i la capacitat de penetrar en núvols i precipitació la fa una tècnica molt atractiva en aquest sentit. Cada cop més estudis científics coincideixen en apuntar un augment en la freqüència d’aquests fenòmens extrems, i una caracterització acurada és necessària per millorar els models de predicció.
Style APA, Harvard, Vancouver, ISO itp.
9

Fahd, Antoine K. "Study and interpretation of the millimeter-wave spectrum of venus". Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/15726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Huerta, Escudero Eliu Antonio. "Source modelling of extreme and intermediate mass ratio inspirals". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609770.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Radio waves (Astronomy)"

1

D, Wolstencroft R., Burton W. B. 1940- i Summer School on "Millimetre and Submillimetre Astronomy, red. Millimetre and submillimetre astronomy: Lectures presented at a summer school held in Stirling, Scotland, June 21-27, 1987. Dordrecht: Kluwer Academic Publishers, 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

U.S.R.I. Member Committee, Federal Republic of Germany., International Union of Radio Science. General Assembly i Deutsche Forschungsgemeinschaft, red. Activities in radio science in Germany, 1993-1995: Report to Union radio-scientifique internationale = International Union of Radio Science, XXVth General Assembly, Lille, France, August/September 1996. Darmstadt: The Committee, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

1953-, Fornel Frédérique de, i Favennec Pierre-Noël, red. Measurements with optic and RF waves. London: ISTE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1953-, Fornel Frédérique de, i Favennec Pierre-Noël, red. Measurements with optic and RF waves. London: ISTE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Fornel, Frédérique de. Measurements using optic and RF waves. London: ISTE, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wong, H. K. Plasma and radio waves from Neptune: Source mechanisms and propagation, final report for the period 1 January 1991 through 31 March 1994, SwRI project 15-4167, NASA grant no. NAGW-2412. [San Antonio, Tex.]: SRI, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

O, Benz A., red. Radio continua during solar flares: Selected contributions to the workshop held at Duino, Italy, May, 1985. Dordrecht: D. Reidel, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kotelʹnikov, V. A. Sobranie trudov: K 100-letii︠u︡ so dni︠a︡ rozhdenii︠a︡. Moskva: Fizmatlit, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1962-, Mangum Jeffrey Gary, i Radford Simon John Elliott, red. Imaging at radio through submillimeter wavelengths: Proceedings of a meeting held at Loews Ventana Canyon Resort, Tucson, Arizona, USA, 6-9 June 1999. San Francisco, Calif: Astronomical Society of the Pacific, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

United States. National Aeronautics and Space Administration., red. Detectability of electrostatic decay products in Ulysses and Galileo observations of type III solar radio sources. [Washington, DC: National Aeronautics and Space Administration, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Radio waves (Astronomy)"

1

Lauterbach, Thomas. "What Are Electromagnetic Waves?" W Radio Astronomy, 11–23. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36035-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Goss, W. M., Claire Hooker i Ronald D. Ekers. "The Evolution of Aperture Synthesis Imaging". W Historical & Cultural Astronomy, 613–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-07916-0_37.

Pełny tekst źródła
Streszczenie:
AbstractThe theme of interference between radio waves played a key unifying role throughout Pawsey’s career. Pawsey used radio-wave interference to study the structure of the ionosphere for his PhD research (Chap. 7), and it was Pawsey who first realised that radio images of the sky could be made from measurements of radio interference. Since these observations are made in the aperture plane and not the image plane, this is referred to as “indirect imaging”. When electromagnetic waves from the same source combine, they can either reinforce or cancel depending on the path difference. This makes the classical beating interference patterns often referred to as “fringes”. The first interference patterns in the radio were seen by Hertz between 1886 and 1889 during the course of his experiments to prove that the radio waves he had detected had the interference properties predicted by Maxwell’s electromagnetic theory (Pierce, 1910).
Style APA, Harvard, Vancouver, ISO itp.
3

Cairns, Iver H., i P. A. Robinson. "Roles played by electrostatic waves in producing radio emissions". W Radio Astronomy at Long Wavelengths, 27–36. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm119p0027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bastian, T. S. "Propagation of radio waves in the corona and solar wind". W Radio Astronomy at Long Wavelengths, 85–96. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm119p0085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Spangler, S. R. "Interstellar Magnetohydrodynamic Waves as Revealed by Radio Astronomy". W Galactic and Intergalactic Magnetic Fields, 176. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Orchiston, Wayne, Peter Robertson i Woodruff T. Sullivan III. "Exploring the Neighbourhood – the Sun, the Moon and Jupiter". W Golden Years of Australian Radio Astronomy, 101–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91843-3_3.

Pełny tekst źródła
Streszczenie:
AbstractThe idea that the Sun may emit radio waves has a long history. As Woody Sullivan (1982) has shown in his Classics in Radio Astronomy, the idea first gained credence in the 1890s, but initial searches by a number of different investigators proved fruitless (e.g. see Débarbat et al. (2007) for details of Nordmann’s search in 1901). Success would come half-century later, thanks largely to the development of wartime radar.
Style APA, Harvard, Vancouver, ISO itp.
7

Orchiston, Wayne, Peter Robertson i Woodruff T. Sullivan III. "From Radar to Radio Astronomy". W Golden Years of Australian Radio Astronomy, 1–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91843-3_1.

Pełny tekst źródła
Streszczenie:
AbstractToday’s astronomers study the sky at a wide range of wavelengths, spread across the electromagnetic spectrum, from radio through microwave, infrared, the optical range, the ultraviolet, X-rays and gamma rays (Fig. 1.1). They also use cosmic rays and neutrinos, and the newest field is gravitational wave astronomy. Some of these types of radiation can be observed from the Earth’s surface, others rely on space telescopes. Some are comparatively recent innovations, while optical astronomy – in various guises – dates back many millennia.
Style APA, Harvard, Vancouver, ISO itp.
8

Goldsmith, Paul F. "Some Radio Telescope Considerations in Millimeter and Submillimeter Radio Astronomy". W Millimeter-Wave Astronomy: Molecular Chemistry & Physics in Space, 405–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4714-9_25.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Steinberg, J. L., C. Lacombe i S. Hoang. "Radio wave propagation in the Earth's magnetosphere". W Radio Astronomy at Long Wavelengths, 75–84. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm119p0075.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Desch, Michael D., i William M. Farrell. "Terrestrial LF bursts: Escape paths and wave intensification". W Radio Astronomy at Long Wavelengths, 205–11. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm119p0205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Radio waves (Astronomy)"

1

Jones, Glenn, Heather McCarrick, Daniel Flanigan, Brad Johnson, Amber Miller, Peter Day, Phil Mauskopf i in. "Aluminum LEKIDs for millimeter-wave radio astronomy". W 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ogawa, H. "A 100 - 115 GHz SIS receiver for radio astronomy". W 16th International Conference on Infrared and Millimeter Waves. SPIE, 1991. http://dx.doi.org/10.1117/12.2297780.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

"IX - Radio Astronomy and Earth's Environment Study". W The Fifth International Kharkov Symposium on Physics and Engineering Of Microwaves, Millimeter, and Submillimeter Waves. IEEE, 2004. http://dx.doi.org/10.1109/msmw.2004.1346223.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Uzawa, Yoshinori, Yasunori Fujii, Matthias Kroug, Kazumasa Makise, Alvaro Gonzalez, Keiko Kaneko, Takafumi Kojima i in. "Development of superconducting THz receivers for radio astronomy". W 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

"Session F: Radio astronomy and earth's environment study". W 2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2010. http://dx.doi.org/10.1109/msmw.2010.5545966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yang, J., W. L. Shan, S. C. Shi, Q. J. Yao, Y. X. Zuo, S. H. Chen, A. Q. Cao i Z. H. Lin. "The Superconducting Spectroscopic Array Receiver (SSAR) for Millimeter-wave Radio Astronomy". W 2008 Global Symposium on Millimeter Waves (GSMM 2008). IEEE, 2008. http://dx.doi.org/10.1109/gsmm.2008.4534591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Leech, J., B. K. Tan i G. Yassin. "Smooth walled feed horns for mm and submm radio astronomy". W 2013 6th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT). IEEE, 2013. http://dx.doi.org/10.1109/ucmmt.2013.6641551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Inatani, J., i N. Kaifu. "Radio Astronomy in Millimetre Waves and Beyond ? Nobeyama Radio Observatory and its Receiver Development". W 19th European Microwave Conference, 1989. IEEE, 1989. http://dx.doi.org/10.1109/euma.1989.334146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rudakov, Kirill, Andrey Khudchenko, Lyudmila Filippenko, Pavel Dmitriev, Andrey Baryshev, Ronald Hesper i Valery Koshelets. "Low-noise THz-range Nb based SIS Receivers for Radio Astronomy". W 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2020. http://dx.doi.org/10.1109/irmmw-thz46771.2020.9370465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

"Session F radio astronomy and study of the earth environment". W 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2013. http://dx.doi.org/10.1109/msmw.2013.6622113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii