Artykuły w czasopismach na temat „Radical hydroxyl. Chlore. Ozone”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radical hydroxyl. Chlore. Ozone”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ye, Miaomiao, Tuqiao Zhang, Zhiwei Zhu, Yan Zhang i Yiping Zhang. "Photodegradation of 4-chloronitrobenzene in the presence of aqueous titania suspensions in different gas atmospheres". Water Science and Technology 64, nr 7 (1.10.2011): 1466–72. http://dx.doi.org/10.2166/wst.2011.531.
Pełny tekst źródłaCho, Min, Hyenmi Chung i Jeyong Yoon. "Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions". Applied and Environmental Microbiology 69, nr 4 (kwiecień 2003): 2284–91. http://dx.doi.org/10.1128/aem.69.4.2284-2291.2003.
Pełny tekst źródłaJung, Jong Tae, Jong Oh Kim, Bum Gun Kwon i Dong Ha Song. "Removal of Refractory Organic Compounds Using Peroxy Radical and Ozone Reaction in Aqueous Solution". Materials Science Forum 569 (styczeń 2008): 33–36. http://dx.doi.org/10.4028/www.scientific.net/msf.569.33.
Pełny tekst źródłaBeltrán, Fernando J., Manuel Checa, Javier Rivas i Juan F. García-Araya. "Modeling the Mineralization Kinetics of Visible Led Graphene Oxide/Titania Photocatalytic Ozonation of an Urban Wastewater Containing Pharmaceutical Compounds". Catalysts 10, nr 11 (30.10.2020): 1256. http://dx.doi.org/10.3390/catal10111256.
Pełny tekst źródłaTootchi, L., R. Seth, S. Tabe i P. Yang. "Transformation products of pharmaceutically active compounds during drinking water ozonation". Water Supply 13, nr 6 (12.09.2013): 1576–82. http://dx.doi.org/10.2166/ws.2013.172.
Pełny tekst źródłaVel Leitner, Nathalie Karpel, i Babak Roshani. "Kinetic of benzotriazole oxidation by ozone and hydroxyl radical". Water Research 44, nr 6 (marzec 2010): 2058–66. http://dx.doi.org/10.1016/j.watres.2009.12.018.
Pełny tekst źródłaSpanggord, Ronald J., David Yao i Theodore Mill. "Kinetics of Aminodinitrotoluene Oxidations with Ozone and Hydroxyl Radical". Environmental Science & Technology 34, nr 3 (luty 2000): 450–54. http://dx.doi.org/10.1021/es990189i.
Pełny tekst źródłaAzrague, K., S. W. Osterhus i J. G. Biomorgi. "Degradation of pCBA by catalytic ozonation in natural water". Water Science and Technology 59, nr 6 (1.03.2009): 1209–17. http://dx.doi.org/10.2166/wst.2009.078.
Pełny tekst źródłaUtsumi, Hideo, Sang-Kuk Han i Kazuhiro Ichikawa. "Enhancement of hydroxyl radical generation by phenols and their reaction intermediates during ozonation". Water Science and Technology 38, nr 6 (1.09.1998): 147–54. http://dx.doi.org/10.2166/wst.1998.0247.
Pełny tekst źródłaMutseyekwa, Michael Emmanuel, Şifa Doğan i Saltuk Pirgalıoğlu. "Ozonation for the removal of bisphenol A". Water Science and Technology 76, nr 10 (2.08.2017): 2764–75. http://dx.doi.org/10.2166/wst.2017.446.
Pełny tekst źródłaHan, Y. H., K. Ichikawa i H. Utsumi. "A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation". Water Science and Technology 50, nr 8 (1.10.2004): 97–102. http://dx.doi.org/10.2166/wst.2004.0497.
Pełny tekst źródłaRamasamy, Sathiyamurthi, Tomoki Nakayama, Yu Morino, Takashi Imamura, Yoshizumi Kajii, Shinichi Enami i Kei Sato. "Nitrate radical, ozone and hydroxyl radical initiated aging of limonene secondary organic aerosol". Atmospheric Environment: X 9 (styczeń 2021): 100102. http://dx.doi.org/10.1016/j.aeaoa.2021.100102.
Pełny tekst źródłaLiu, Xiaoyu, Harvey E. Jeffries i Kenneth G. Sexton. "Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene". Atmospheric Environment 33, nr 18 (sierpień 1999): 3005–22. http://dx.doi.org/10.1016/s1352-2310(99)00078-3.
Pełny tekst źródłaForester, C. D., i J. R. Wells. "Hydroxyl radical yields from reactions of terpene mixtures with ozone". Indoor Air 21, nr 5 (9.05.2011): 400–409. http://dx.doi.org/10.1111/j.1600-0668.2011.00718.x.
Pełny tekst źródłaElovitz, Michael S., i Urs von Gunten. "Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The RctConcept". Ozone: Science & Engineering 21, nr 3 (styczeń 1999): 239–60. http://dx.doi.org/10.1080/01919519908547239.
Pełny tekst źródłaEngdahl, Anders, i Bengt Nelander. "A 1:1 complex between a hydroxyl radical and ozone". Journal of Chemical Physics 122, nr 12 (22.03.2005): 126101. http://dx.doi.org/10.1063/1.1872852.
Pełny tekst źródłaMa, Tsz-Kan, Diyuan Li i Jonathan D. Wilden. "Mechanistic studies of reactive oxygen species mediated electrochemical radical reactions of alkyl iodides". Chemical Communications 57, nr 67 (2021): 8356–59. http://dx.doi.org/10.1039/d1cc03019a.
Pełny tekst źródłaPisarenko, Aleksey N., Erica J. Marti, Daniel Gerrity, Julie R. Peller i Eric R. V. Dickenson. "Effects of molecular ozone and hydroxyl radical on formation of N-nitrosamines and perfluoroalkyl acids during ozonation of treated wastewaters". Environmental Science: Water Research & Technology 1, nr 5 (2015): 668–78. http://dx.doi.org/10.1039/c5ew00046g.
Pełny tekst źródłaRagnar, M., T. Eriksson i T. Reitberger. "Radical Formation in Ozone Reactions with Lignin and Carbohydrate Model Compounds". Holzforschung 53, nr 3 (10.05.1999): 292–98. http://dx.doi.org/10.1515/hf.1999.049.
Pełny tekst źródłaFijołek, Lilla, Joanna Świetlik i Marcin Frankowski. "The Role of Sulphate and Phosphate Ions in the Recovery of Benzoic Acid Self-Enhanced Ozonation in Water Containing Bromides". Molecules 26, nr 9 (5.05.2021): 2701. http://dx.doi.org/10.3390/molecules26092701.
Pełny tekst źródłaKumarathasan, Prem, Renaud Vincent, Patrick Goegan, Marc Potvin i Josée Guénette. "Hydroxyl radical adduct of 5-aminosalicylic acid: A potential marker of ozone-induced oxidative stress". Biochemistry and Cell Biology 79, nr 1 (1.01.2001): 33–42. http://dx.doi.org/10.1139/o00-091.
Pełny tekst źródłaHan, Y. H., I. Koshiishi i H. Utsumi. "Determination of an effect of 3-chlorophenol on hydroxyl radical generation during ozonation through kinetic study in the power law type". Water Supply 4, nr 5-6 (1.12.2004): 305–11. http://dx.doi.org/10.2166/ws.2004.0121.
Pełny tekst źródłaShao, Yu, Zhicheng Pang, Lili Wang i Xiaowei Liu. "Efficient Degradation of Acesulfame by Ozone/Peroxymonosulfate Advanced Oxidation Process". Molecules 24, nr 16 (8.08.2019): 2874. http://dx.doi.org/10.3390/molecules24162874.
Pełny tekst źródłaIkhlaq, Amir, Rahat Javaid, Asia Akram, Umair Yaqub Qazi, Javeria Erfan, Metwally Madkour, Mohamed Elnaiem M. Abdelbagi, Sami M. Ibn Shamsah i Fei Qi. "Application of Attapulgite Clay-Based Fe-Zeolite 5A in UV-Assisted Catalytic Ozonation for the Removal of Ciprofloxacin". Journal of Chemistry 2022 (19.05.2022): 1–10. http://dx.doi.org/10.1155/2022/2846453.
Pełny tekst źródłaShi, Fa Min, Lei Wang, Si Mo Shi, Han Fei Zhang, Chang Qing Dong i Wu Qin. "Catalytic Hydroxyl Radical Generation by CuO Confined in Multi-Walled Carbon Nanotubes". Advanced Materials Research 557-559 (lipiec 2012): 448–55. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.448.
Pełny tekst źródłaRagnar, M., T. Eriksson i T. Reitberger. "Detection of Radicals Generated by Strong Oxidants in Acidic Media". Holzforschung 53, nr 3 (10.05.1999): 285–91. http://dx.doi.org/10.1515/hf.1999.048.
Pełny tekst źródłaHunter, Gary, Bob Hulsey, Jim Coughenour, Thomas Walz i Shane Snyder. "Out in the Ozone the Return of Ozone and the Hydroxyl Radical to Wastewater Disinfection". Proceedings of the Water Environment Federation 2006, nr 12 (1.01.2006): 1192–201. http://dx.doi.org/10.2175/193864706783749620.
Pełny tekst źródłaZhu, Shumin, Bingzhi Dong, Naiyun Gao i Jin Jiang. "Removal of IBMP using ozonation: role of ozone and hydroxyl radical". Desalination and Water Treatment 57, nr 59 (20.06.2016): 28776–83. http://dx.doi.org/10.1080/19443994.2016.1193063.
Pełny tekst źródłaNöthe, Tobias, Hans Fahlenkamp i Clemens von Sonntag. "Ozonation of Wastewater: Rate of Ozone Consumption and Hydroxyl Radical Yield". Environmental Science & Technology 43, nr 15 (sierpień 2009): 5990–95. http://dx.doi.org/10.1021/es900825f.
Pełny tekst źródłaBurns, Nick, Gary Hunter, Amanda Jackman, Bob Hulsey, Jim Coughenour i Thomas Walz. "The Return of Ozone and the Hydroxyl Radical to Wastewater Disinfection". Ozone: Science & Engineering 29, nr 4 (31.07.2007): 303–6. http://dx.doi.org/10.1080/01919510701463206.
Pełny tekst źródłaAli, Zarafshan, Amir Ikhlaq, Umair Yaqub Qazi, Asia Akram, Iftikhar Ul-Hasan, Amira Alazmi, Fei Qi i Rahat Javaid. "Removal of Disperse Yellow-42 Dye by Catalytic Ozonation Using Iron and Manganese-Loaded Zeolites". Water 15, nr 17 (29.08.2023): 3097. http://dx.doi.org/10.3390/w15173097.
Pełny tekst źródłaJiménez-Estrada, Manuel, Ricardo Reyes-Chilpa, Arturo Navarro-Ocaña i Daniel Arrieta-Báez. "Reactivity of Several Reactive Oxygen Species (ROS) with the Sesquiterpene Cacalol". Natural Product Communications 3, nr 4 (kwiecień 2008): 1934578X0800300. http://dx.doi.org/10.1177/1934578x0800300403.
Pełny tekst źródłaGlaze, William H., Fernando Beltran, Tuula Tuhkanen i Joon-Wun Kang. "Chemical Models of Advanced Oxidation Processes". Water Quality Research Journal 27, nr 1 (1.02.1992): 23–42. http://dx.doi.org/10.2166/wqrj.1992.002.
Pełny tekst źródłaZhao, Wen Yu, Xiao Feng Zheng, Li Wei Xu, Guang Wen Yang i Qi Mu. "Overview and Prospect of Strengthen Ozone Oxidation Technology in Water Treatment". Advanced Materials Research 726-731 (sierpień 2013): 1710–14. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.1710.
Pełny tekst źródłaDerwent, Richard G. "Representing Organic Compound Oxidation in Chemical Mechanisms for Policy-Relevant Air Quality Models under Background Troposphere Conditions". Atmosphere 11, nr 2 (7.02.2020): 171. http://dx.doi.org/10.3390/atmos11020171.
Pełny tekst źródłaKaramah, Eva Fathul, Ika Putri Adripratiwi i Linggar Anindita. "Combination of Ozonation and Adsorption Using Granular Activated Carbon (GAC) for Tofu Industry Wastewater Treatment". Indonesian Journal of Chemistry 18, nr 4 (12.11.2018): 600. http://dx.doi.org/10.22146/ijc.26724.
Pełny tekst źródłaDhanakodi, P., i M. Jayendran. "Hydroxyl Radical Rinse Water Technology using Ozone Ultasonic and Ultraviolet Oxidation Process". Indian Journal of Public Health Research & Development 8, nr 3s (2017): 166. http://dx.doi.org/10.5958/0976-5506.2017.00271.6.
Pełny tekst źródłaPark, Ji-Ho. "CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical". Korean Journal of Environmental Health Sciences 35, nr 6 (31.12.2009): 532–37. http://dx.doi.org/10.5668/jehs.2009.35.6.532.
Pełny tekst źródłaPreis, S., I. C. Panorel, I. Kornev, H. Hatakka i J. Kallas. "Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation". Water Science and Technology 68, nr 7 (1.10.2013): 1536–42. http://dx.doi.org/10.2166/wst.2013.399.
Pełny tekst źródłaChen, L., F. Qi, B. Xu, Z. Xu, J. Shen i K. Li. "The efficiency and mechanism of γ-alumina catalytic ozonation of 2-methylisoborneol in drinking water". Water Supply 6, nr 3 (1.07.2006): 43–51. http://dx.doi.org/10.2166/ws.2006.726.
Pełny tekst źródłaUmosekhaimhe, G. O., i S. E. Umukoro. "Thermochemical Evaluation of Hydroxyl and Peroxyl Radical Precursors in the Formation of Tropospheric Ozone Reactions". International Journal of Engineering Research in Africa 3 (listopad 2010): 74–83. http://dx.doi.org/10.4028/www.scientific.net/jera.3.74.
Pełny tekst źródłaVan der Zee, J., E. Van Beek, T. M. A. R. Dubbelman i J. Van Steveninck. "Toxic effects of ozone on murine L929 fibroblasts. Damage to DNA". Biochemical Journal 247, nr 1 (1.10.1987): 69–72. http://dx.doi.org/10.1042/bj2470069.
Pełny tekst źródłaTan, Zhaofeng, Keding Lu, Meiqing Jiang, Rong Su, Hongli Wang, Shengrong Lou, Qingyan Fu i in. "Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation". Atmospheric Chemistry and Physics 19, nr 6 (20.03.2019): 3493–513. http://dx.doi.org/10.5194/acp-19-3493-2019.
Pełny tekst źródłaKamimura, M., S. Furukawa i J. Hirotsuji. "Development of a simulator for ozone/UV reactor based on CFD analysis". Water Science and Technology 46, nr 11-12 (1.12.2002): 13–19. http://dx.doi.org/10.2166/wst.2002.0710.
Pełny tekst źródłaYapsaklı, Kozet, i Zehra S. Can. "Interaction of Ozone with Formic Acid: A System which Supresses the Scavenging Effect of HCO3-/CO32-". Water Quality Research Journal 39, nr 2 (1.05.2004): 140–48. http://dx.doi.org/10.2166/wqrj.2004.021.
Pełny tekst źródłaMasten, Susan J., i Jürg Hoigné. "Comparison of Ozone and Hydroxyl Radical-Induced Oxidation of Chlorinated Hydrocarbons in Water". Ozone: Science & Engineering 14, nr 3 (czerwiec 1992): 197–214. http://dx.doi.org/10.1080/01919519208552475.
Pełny tekst źródłaCheng, Wen, Li Jiang, Xuejun Quan, Chen Cheng, Xiaoxue Huang, Zhiliang Cheng i Lu Yang. "Ozonation process intensification of p-nitrophenol by in situ separation of hydroxyl radical scavengers and microbubbles". Water Science and Technology 80, nr 1 (1.07.2019): 25–36. http://dx.doi.org/10.2166/wst.2019.227.
Pełny tekst źródłaSangadkit, W., i J. Kongtrub. "Effective microbial disinfection in food industry with hydroxyl radical fumigation". Food Research 4, S4 (20.12.2020): 65–72. http://dx.doi.org/10.26656/fr.2017.4(s4).010.
Pełny tekst źródłaCazorla, M., W. H. Brune, X. Ren i B. Lefer. "Direct measurement of ozone production rates in Houston in 2009 and comparison with two estimation methods". Atmospheric Chemistry and Physics Discussions 11, nr 10 (10.10.2011): 27521–46. http://dx.doi.org/10.5194/acpd-11-27521-2011.
Pełny tekst źródłaFelis, E., i K. Miksch. "Nonylphenols degradation in the UV, UV/H2O2, O3 and UV/O3 processes – comparison of the methods and kinetic study". Water Science and Technology 71, nr 3 (6.01.2015): 446–53. http://dx.doi.org/10.2166/wst.2015.011.
Pełny tekst źródła