Artykuły w czasopismach na temat „Radiative Heat Transfer Rate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radiative Heat Transfer Rate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, L. H., i S. X. Chu. "On the Entropy Generation Formula of Radiation Heat Transfer Processes". Journal of Heat Transfer 128, nr 5 (21.10.2005): 504–6. http://dx.doi.org/10.1115/1.2190695.
Pełny tekst źródłaZhang, Chong, Zhongnong Zhang i Chun Lou. "Thermodynamic Irreversibility Analysis of Thermal Radiation in Coal-Fired Furnace: Effect of Coal Ash Deposits". Materials 16, nr 2 (13.01.2023): 799. http://dx.doi.org/10.3390/ma16020799.
Pełny tekst źródłaSaleem, M., M. A. Hossain, Suvash C. Saha i Y. T. Gu. "Heat Transfer Analysis of Viscous Incompressible Fluid by Combined Natural Convection and Radiation in an Open Cavity". Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/412480.
Pełny tekst źródłaBudaev, Bair V., i David B. Bogy. "The role of EM wave polarization on radiative heat transfer across a nanoscale gap". Journal of Applied Physics 132, nr 5 (7.08.2022): 054903. http://dx.doi.org/10.1063/5.0094382.
Pełny tekst źródłaBayazitoglu, Y., i P. V. R. Suryanarayana. "Transient Radiative Heat Transfer From a Sphere Surrounded by a Participating Medium". Journal of Heat Transfer 111, nr 3 (1.08.1989): 713–18. http://dx.doi.org/10.1115/1.3250741.
Pełny tekst źródłaNguyen, Phuc-Danh, Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Gabriel Mosca, Moncef Gazdallah, Paul Lybaert i Véronique Feldheim. "Flameless combustion of low calorific value gases, experiments, and simulations with advanced radiative heat transfer modeling". Physics of Fluids 34, nr 4 (kwiecień 2022): 045123. http://dx.doi.org/10.1063/5.0087077.
Pełny tekst źródłaHu, Xuanyu, Bastian Gundlach, Ingo von Borstel, Jürgen Blum i Xian Shi. "Effect of radiative heat transfer in porous comet nuclei: case study of 67P/Churyumov-Gerasimenko". Astronomy & Astrophysics 630 (20.09.2019): A5. http://dx.doi.org/10.1051/0004-6361/201834631.
Pełny tekst źródłaTong, T. W., i S. B. Sathe. "Heat Transfer Characteristics of Porous Radiant Burners". Journal of Heat Transfer 113, nr 2 (1.05.1991): 423–28. http://dx.doi.org/10.1115/1.2910578.
Pełny tekst źródłaFernandez Arroiabe, Peru, Jon Iturralde Iñarga, Mercedes Gómez de Arteche Botas, Susana López Pérez, Eduardo Ubieta Astigarraga, Iñigo Unamuno, Manex Martinez-Agirre i M. Mounir Bou-Ali. "Design of a radiative heat recuperator for steel processes". MATEC Web of Conferences 330 (2020): 01034. http://dx.doi.org/10.1051/matecconf/202033001034.
Pełny tekst źródłaVyas, Prashant Dineshbhai, Harish C. Thakur i Veera P. Darji. "Nonlinear analysis of convective-radiative longitudinal fin of various profiles". International Journal of Numerical Methods for Heat & Fluid Flow 30, nr 6 (29.05.2019): 3065–82. http://dx.doi.org/10.1108/hff-08-2018-0444.
Pełny tekst źródłaEsfahani, Javad, i Ali Abdolabadi. "Effect of char layer on transient thermal oxidative degradation of polyethylene". Thermal Science 11, nr 2 (2007): 23–36. http://dx.doi.org/10.2298/tsci0702023e.
Pełny tekst źródłaBen-Mansour, Rached, Mohamed A. Habib i Pervez Ahmed. "The Effect of Radiation on Oxy-Fuel Combustion Characteristics in Microchannels". Applied Mechanics and Materials 302 (luty 2013): 49–54. http://dx.doi.org/10.4028/www.scientific.net/amm.302.49.
Pełny tekst źródłaWang, Tianxiang, Yinan Qiu, Gang Lei, Jinjin Zhang, Yonghua Huang i Guang Yang. "Transient characteristics of coupled thermal radiation and natural convection in a three-dimensional cylindrical cavity containing a heated plate". Thermal Science, nr 00 (2022): 135. http://dx.doi.org/10.2298/tsci220523135w.
Pełny tekst źródłaCollins, M., S. J. Harrison, D. Naylor i P. H. Oosthuizen. "Heat Transfer From an Isothermal Vertical Surface With Adjacent Heated Horizontal Louvers: Numerical Analysis". Journal of Heat Transfer 124, nr 6 (1.12.2002): 1072–77. http://dx.doi.org/10.1115/1.1481357.
Pełny tekst źródłaZhao, J. M., i L. H. Liu. "Spectral Element Approach for Coupled Radiative and Conductive Heat Transfer in Semitransparent Medium". Journal of Heat Transfer 129, nr 10 (5.02.2007): 1417–24. http://dx.doi.org/10.1115/1.2755061.
Pełny tekst źródłaSingh, Khilap, i Manoj Kumar. "Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation". Journal of Thermodynamics 2016 (7.12.2016): 1–10. http://dx.doi.org/10.1155/2016/8307980.
Pełny tekst źródłaMungekar, Hemant P., i Arvind Atreya. "Flame Radiation and Soot Emission From Partially Premixed Methane Counterflow Flames". Journal of Heat Transfer 128, nr 4 (23.10.2005): 361–67. http://dx.doi.org/10.1115/1.2165204.
Pełny tekst źródłaPalesskiy, F. S. "Numerical Study of Combustion Regimes and Heat Radiation of Cylindrical Porous Burner". Key Engineering Materials 685 (luty 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.685.94.
Pełny tekst źródłaSultana Jahan, M. Ferdows, Md. Shamshuddin i Khairy Zaimi. "Radiative Mixed Convection Flow Over a Moving Needle Saturated with Non-Isothermal Hybrid Nanofluid". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, nr 1 (11.10.2021): 81–93. http://dx.doi.org/10.37934/arfmts.88.1.8193.
Pełny tekst źródłaSupramono, Dijan, Adithya Fernando Sitorus i Mohammad Nasikin. "Synergistic Effect on the Non-Oxygenated Fraction of Bio-Oil in Thermal Co-Pyrolysis of Biomass and Polypropylene at Low Heating Rate". Processes 8, nr 1 (2.01.2020): 57. http://dx.doi.org/10.3390/pr8010057.
Pełny tekst źródłaMustafa, M., Junaid Ahmad Khan, T. Hayat i A. Alsaedi. "Numerical Solutions for Radiative Heat Transfer in Ferrofluid Flow due to a Rotating Disk: Tiwari and Das Model". International Journal of Nonlinear Sciences and Numerical Simulation 19, nr 1 (23.02.2018): 1–10. http://dx.doi.org/10.1515/ijnsns-2015-0196.
Pełny tekst źródłaWatanabe, Hirofumi, Shiori Iizuka, Takaya Kato, Masae Kanda i Satarou Yamaguchi. "Heat leak variation with the surface temperature of a cryogenic pipe of the superconducting power transmission". Journal of Physics: Conference Series 2323, nr 1 (1.08.2022): 012036. http://dx.doi.org/10.1088/1742-6596/2323/1/012036.
Pełny tekst źródłaDin, Zia Ud, Amir Ali, Sharif Ullah, Gul Zaman, Kamal Shah i Nabil Mlaiki. "Investigation of Heat Transfer from Convective and Radiative Stretching/Shrinking Rectangular Fins". Mathematical Problems in Engineering 2022 (15.04.2022): 1–10. http://dx.doi.org/10.1155/2022/1026698.
Pełny tekst źródłaWaini, Iskandar, Najiyah Safwa Khashi’ie, Nurul Amira Zainal, Khairum Bin Hamzah, Abdul Rahman Mohd Kasim, Anuar Ishak i Ioan Pop. "Magnetic Dipole Effects on Radiative Flow of Hybrid Nanofluid Past a Shrinking Sheet". Symmetry 15, nr 7 (27.06.2023): 1318. http://dx.doi.org/10.3390/sym15071318.
Pełny tekst źródłaGibbins, Goodwin, i Joanna D. Haigh. "Entropy Production Rates of the Climate". Journal of the Atmospheric Sciences 77, nr 10 (1.10.2020): 3551–66. http://dx.doi.org/10.1175/jas-d-19-0294.1.
Pełny tekst źródłaKairi, Rishi. "Free convection around a slender paraboloid of non-Newtonian fluid in a porous medium". Thermal Science 23, nr 5 Part B (2019): 3067–74. http://dx.doi.org/10.2298/tsci170809005k.
Pełny tekst źródłaBianchi, Daniele, Giuseppe Leccese, Francesco Nasuti, Marcello Onofri i Carmine Carmicino. "Modeling of High Density Polyethylene Regression Rate in the Simulation of Hybrid Rocket Flowfields". Aerospace 6, nr 8 (9.08.2019): 88. http://dx.doi.org/10.3390/aerospace6080088.
Pełny tekst źródłaLebelo, Ramoshweu Solomon, i Kholeka Constance Moloi. "Transient Heat Analysis in a Two-Step Radiative Combustible Slab". Key Engineering Materials 872 (styczeń 2021): 15–19. http://dx.doi.org/10.4028/www.scientific.net/kem.872.15.
Pełny tekst źródłaLebelo, Ramoshweu Solomon, i Kholeka Constance Moloi. "Transient Heat Analysis in a Two-Step Radiative Combustible Slab". Key Engineering Materials 872 (styczeń 2021): 15–19. http://dx.doi.org/10.4028/www.scientific.net/kem.872.15.
Pełny tekst źródłahamid, Aamir, Abdul Hafeez i Masood Khan. "Characteristics of combined heat and mass transfer on mixed convection flow of Sisko fluid model: A numerical study". Modern Physics Letters B 34, nr 24 (6.06.2020): 2050255. http://dx.doi.org/10.1142/s0217984920502553.
Pełny tekst źródłaNelson, D. J., i B. D. Wood. "Evaporation Rate Model for a Natural Convection Glazed Collector/Regenerator". Journal of Solar Energy Engineering 112, nr 1 (1.02.1990): 51–57. http://dx.doi.org/10.1115/1.2930759.
Pełny tekst źródłaAlshehri, Nawal A., Awatef Abidi, Muhammad Riaz Khan, Yanala Dharmendar Reddy, Saim Rasheed, Elham Alali i Ahmed M. Galal. "Unsteady Convective MHD Flow and Heat Transfer of a Viscous Nanofluid across a Porous Stretching/Shrinking Surface: Existence of Multiple Solutions". Crystals 11, nr 11 (8.11.2021): 1359. http://dx.doi.org/10.3390/cryst11111359.
Pełny tekst źródłaSu, Yun, Jiazhen He i Jun Li. "An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation". Textile Research Journal 87, nr 16 (9.08.2016): 1953–67. http://dx.doi.org/10.1177/0040517516660892.
Pełny tekst źródłaImran Khan, M., T. Hayat, M. Ijaz Khan i T. Yasmeen. "Thermal properties and time-dependent flow behavior of a viscous fluid". Bulgarian Chemical Communications 51, nr 2 (2019): 180–84. http://dx.doi.org/10.34049/bcc.51.2.4618.
Pełny tekst źródłaSARMA, D., N. AHMED i H. DEKA. "MHD FREE CONVECTION AND MASS TRANSFER FLOW PAST AN ACCELERATED VERTICAL PLATE WITH CHEMICAL REACTION IN PRESENCE OF RADIATION". Latin American Applied Research - An international journal 44, nr 1 (31.01.2014): 1–8. http://dx.doi.org/10.52292/j.laar.2014.412.
Pełny tekst źródłaZaimuddin, Izzatun Nazurah, i Fazlina Aman. "Nanoparticle Shapes (Sphere, Cylinder and Laminar) Impact with Dusty Carbon Nanotubes-Fluid in Magnetohydrodynamics Radiative Flow". Journal of Nanofluids 11, nr 3 (1.06.2022): 434–52. http://dx.doi.org/10.1166/jon.2022.1850.
Pełny tekst źródłaMjankwi, Musa Antidius, Verdiana Grace Masanja, Eunice W. Mureithi i Makungu Ng’oga James. "Unsteady MHD Flow of Nanofluid with Variable Properties over a Stretching Sheet in the Presence of Thermal Radiation and Chemical Reaction". International Journal of Mathematics and Mathematical Sciences 2019 (2.05.2019): 1–14. http://dx.doi.org/10.1155/2019/7392459.
Pełny tekst źródłaKhan, Muhammad Ijaz, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Faisal Javed i Ahmed Alsaedi. "Entropy generation in radiative flow of Ree-Eyring fluid due to due rotating disks". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 6 (3.06.2019): 2057–79. http://dx.doi.org/10.1108/hff-11-2018-0642.
Pełny tekst źródłaSingh, Phool, Tomer Singh, Sandeep Kumar i Deepa Sinha. "Effect of radiation and porosity parameter on magnetohydrodynamic flow due to stretching sheet in porous media". Thermal Science 15, nr 2 (2011): 517–26. http://dx.doi.org/10.2298/tsci1102517s.
Pełny tekst źródłaMa, Jing, Yasong Sun i Sida Li. "Element Differential Method for Non-Fourier Heat Conduction in the Convective-Radiative Fin with Mixed Boundary Conditions". Coatings 12, nr 12 (30.11.2022): 1862. http://dx.doi.org/10.3390/coatings12121862.
Pełny tekst źródłaSulochana, C., i S. R. Aparna. "Unsteady magnetohydrodynamic radiative liquid thin film flow of hybrid nanofluid with thermophoresis and Brownian motion". Multidiscipline Modeling in Materials and Structures 16, nr 4 (17.12.2019): 811–34. http://dx.doi.org/10.1108/mmms-08-2019-0160.
Pełny tekst źródłaRahman, M. M., i T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium". Nonlinear Analysis: Modelling and Control 13, nr 1 (25.01.2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Pełny tekst źródłaĐorđević, Milan, Velimir Stefanović, Mića Vukić i Marko Mančić. "EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING". Facta Universitatis, Series: Mechanical Engineering 15, nr 3 (9.12.2017): 495. http://dx.doi.org/10.22190/fume171001027d.
Pełny tekst źródłaSolomon, P. R., M. A. Serio, J. E. Cosgrove, D. S. Pines, Y. Zhao, R. C. Buggeln i S. J. Shamroth. "A Coal-Fired Heat Exchanger for an Externally Fired Gas Turbine". Journal of Engineering for Gas Turbines and Power 118, nr 1 (1.01.1996): 22–31. http://dx.doi.org/10.1115/1.2816545.
Pełny tekst źródłaMushtaq, Ammar, M. Mustafa, T. Hayat i A. Alsaedi. "Boundary layer flow over a moving plate in a flowing fluid considering non-linear radiations". International Journal of Numerical Methods for Heat & Fluid Flow 26, nr 5 (6.06.2016): 1617–30. http://dx.doi.org/10.1108/hff-12-2014-0365.
Pełny tekst źródłaQasim, Muhammad, Tasawar Hayat i Saleem Obaidat. "Radiation Effect on the Mixed Convection Flow of a Viscoelastic Fluid Along an Inclined Stretching Sheet". Zeitschrift für Naturforschung A 67, nr 3-4 (1.04.2012): 195–202. http://dx.doi.org/10.5560/zna.2012-0006.
Pełny tekst źródłaFayyadh, Mohammed M., Kohilavani Naganthran, Md Faisal Md Basir, Ishak Hashim i Rozaini Roslan. "Radiative MHD Sutterby Nanofluid Flow Past a Moving Sheet: Scaling Group Analysis". Mathematics 8, nr 9 (26.08.2020): 1430. http://dx.doi.org/10.3390/math8091430.
Pełny tekst źródłaLeonardi, S. A., R. Viskanta i J. P. Gore. "Analytical and Experimental Study of Combustion and Heat Transfer in Submerged Flame Metal Fiber Burners/Heaters". Journal of Heat Transfer 125, nr 1 (29.01.2003): 118–25. http://dx.doi.org/10.1115/1.1527910.
Pełny tekst źródłaAbu-Hamdeh, Nidal H., Abdulmalik A. Aljinaidi, Mohamed A. Eltaher, Khalid H. Almitani, Khaled A. Alnefaie, Abdullah M. Abusorrah i Mohammad Reza Safaei. "Implicit Finite Difference Simulation of Prandtl-Eyring Nanofluid over a Flat Plate with Variable Thermal Conductivity: A Tiwari and Das Model". Mathematics 9, nr 24 (7.12.2021): 3153. http://dx.doi.org/10.3390/math9243153.
Pełny tekst źródłaSanchez, Florian, Susan Liscouët-Hanke i Tanmay Bhise. "Influence of Ventilation Flow Rate and Gap Distance on the Radiative Heat Transfer in Aircraft Avionics Bays". Aerospace 9, nr 12 (8.12.2022): 806. http://dx.doi.org/10.3390/aerospace9120806.
Pełny tekst źródła