Gotowa bibliografia na temat „Radiative Heat Transfer Rate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radiative Heat Transfer Rate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radiative Heat Transfer Rate"
Liu, L. H., i S. X. Chu. "On the Entropy Generation Formula of Radiation Heat Transfer Processes". Journal of Heat Transfer 128, nr 5 (21.10.2005): 504–6. http://dx.doi.org/10.1115/1.2190695.
Pełny tekst źródłaZhang, Chong, Zhongnong Zhang i Chun Lou. "Thermodynamic Irreversibility Analysis of Thermal Radiation in Coal-Fired Furnace: Effect of Coal Ash Deposits". Materials 16, nr 2 (13.01.2023): 799. http://dx.doi.org/10.3390/ma16020799.
Pełny tekst źródłaSaleem, M., M. A. Hossain, Suvash C. Saha i Y. T. Gu. "Heat Transfer Analysis of Viscous Incompressible Fluid by Combined Natural Convection and Radiation in an Open Cavity". Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/412480.
Pełny tekst źródłaBudaev, Bair V., i David B. Bogy. "The role of EM wave polarization on radiative heat transfer across a nanoscale gap". Journal of Applied Physics 132, nr 5 (7.08.2022): 054903. http://dx.doi.org/10.1063/5.0094382.
Pełny tekst źródłaBayazitoglu, Y., i P. V. R. Suryanarayana. "Transient Radiative Heat Transfer From a Sphere Surrounded by a Participating Medium". Journal of Heat Transfer 111, nr 3 (1.08.1989): 713–18. http://dx.doi.org/10.1115/1.3250741.
Pełny tekst źródłaNguyen, Phuc-Danh, Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Gabriel Mosca, Moncef Gazdallah, Paul Lybaert i Véronique Feldheim. "Flameless combustion of low calorific value gases, experiments, and simulations with advanced radiative heat transfer modeling". Physics of Fluids 34, nr 4 (kwiecień 2022): 045123. http://dx.doi.org/10.1063/5.0087077.
Pełny tekst źródłaHu, Xuanyu, Bastian Gundlach, Ingo von Borstel, Jürgen Blum i Xian Shi. "Effect of radiative heat transfer in porous comet nuclei: case study of 67P/Churyumov-Gerasimenko". Astronomy & Astrophysics 630 (20.09.2019): A5. http://dx.doi.org/10.1051/0004-6361/201834631.
Pełny tekst źródłaTong, T. W., i S. B. Sathe. "Heat Transfer Characteristics of Porous Radiant Burners". Journal of Heat Transfer 113, nr 2 (1.05.1991): 423–28. http://dx.doi.org/10.1115/1.2910578.
Pełny tekst źródłaFernandez Arroiabe, Peru, Jon Iturralde Iñarga, Mercedes Gómez de Arteche Botas, Susana López Pérez, Eduardo Ubieta Astigarraga, Iñigo Unamuno, Manex Martinez-Agirre i M. Mounir Bou-Ali. "Design of a radiative heat recuperator for steel processes". MATEC Web of Conferences 330 (2020): 01034. http://dx.doi.org/10.1051/matecconf/202033001034.
Pełny tekst źródłaVyas, Prashant Dineshbhai, Harish C. Thakur i Veera P. Darji. "Nonlinear analysis of convective-radiative longitudinal fin of various profiles". International Journal of Numerical Methods for Heat & Fluid Flow 30, nr 6 (29.05.2019): 3065–82. http://dx.doi.org/10.1108/hff-08-2018-0444.
Pełny tekst źródłaRozprawy doktorskie na temat "Radiative Heat Transfer Rate"
Wangdhamkoom, Panitan. "Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct". Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/1007.
Pełny tekst źródłaWangdhamkoom, Panitan. "Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct". Curtin University of Technology, Department of Mechanical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17353.
Pełny tekst źródłaMaheria, Mehulkumar. "Thermal Analysis of Natural Convectiona and Radiation in Porous Fins". Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1281982835.
Pełny tekst źródłaColomer, Rey Guillem. "Numerical methods for radiative heat transfer". Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6691.
Pełny tekst źródłaEn el capítol 1 s'exposa una breu introducció a la transferència d'energia per radiació, i una explicació de les equacions que la governen. Es tracta de l'equació del transport radiatiu, formulada en termes dels coeficients d'absorció i de dispersió, i l'equació de l'energia. També s'indica quan cal tenir en compte aquest fenòmen, i a més a més, es defineixen totes les magnituds i conceptes que s'han utilitzat en aquesta tesi. També es dóna una breu descripció d'algunes simplificacions que es poden fer a les equacions governants.
El mètode de les radiositats s'explica en el capítol 2. També s'hi descriu un procediment numèric que permet calcular els factors de vista en geometries amb simetria cilíndrica, i es presenten resultats obtinguts amb el mètode descrit. Tot i que aquest capítol està una mica deslligat de la resta de la tesi, l'algoritme ideat per tractar geometries tridimensionals amb un temps computacional molt proper al de geometries bidimensionals, sense un increment de memòria apreciable, dóna uns resultats prou bons com per formar part de la tesi.
El mètode de les ordenades discretes (DOM) es detalla en el capítol 3. L'aspecte més important d'aquest mètode es l'elecció del conjunt d'ordenades per integrar l'equació del transport radiatiu. S'enumeren quines propietats han d'acomplir aquests conjunts. S'hi explica amb detall la discretització de la equació del transport radiatiu, tant en coordenades cartesianes com en cilíndriques. Es presenten també alguns resultats ilustratius obtinguts amb aquest mètode.
En el moment en que es vol resoldre un problema real, cal tenir present que el coeficients d'absorció pot dependre bruscament de la longitud d'ona de la radiació. En aquesta tesi s'ha considerat aquesta dependència amb especial interés, en el capítol 4. Aquest interès ha motivat una recerca bibliogràfica sobre la modelització aquesta forta dependència espectral del coeficient d'absorció. Aquesta recerca s'ha dirigit també a l'estudi dels diferents models numèrics existents capaços d'abordar-la, i de resoldre la equació del transport radiatiu en aquestes condicions. Es descriuen diversos mètodes, i, d'aquests, se n'han implementat dos: el mètode de la suma ponderada de gasos grisos (WSGG), i el mètode de la suma de gasos grisos ponderada per línies espectrals (SLW). S'hi presenten també resultats ilustratius.
S'han realitzat multitud de proves en el codi numèric resultant de l'elaboració d'aquesta tesi. Tenint en compte els resultats obtinguts, es pot dir que els objectius proposats a l'inici de la tesi s'han acomplert. Com a demostració de la utilitat del codi resultant, aquest ha estat integrat en un codi de proposit general (DPC), resultat del treball de molts investigadors en els darrers anys.
Aquesta esmentada integració permet la resolució de problemes combinats de transferència de calor, analitzats en els capítols 5 i 6, on la radiació s'acobla amb la transferència de calor per convecció. La influència de la radiació en la transferència total de calor s'estudia en el capítol 5, publicat a la International Journal of Heat and Mass Transfer, volum 47 (núm. 2), pàg. 257-269, 2004. En el capítol 6, s'analitza l'efecte d'alguns paràmetres del mètode SLW en un problema combinat de transferència de calor. Aquest capítol s'ha enviat a la revista Journal of Quantitative Spectroscopy and Radiative Transfer, per què en consideri la publicació.
The main objective of the present thesis is to study the energy transfer by means of radiation. Therefore, the basic phenomenology of radiative heat transfer has been studied. However, considering the nature of the equation that describes such energy transfer, this work is focussed on the numerical methods which will allow us to take radiation into account, for both transparent and participating media. Being this the first effort within the CTTC ("Centre Tecnològic de Transferència de Calor") research group on this subject, it is limited to simple cartesian and cylindrical geometries.
For this purpose, chapter 1 contains an introduction to radiative energy transfer and the basic equations that govern radiative transfer are discussed. These are the radiative transfer equation, formulated in terms of the absorption and scattering coefficients, and the energy equation. It is also given a discussion on when this mode of energy transfer should be considered. In this chapter are also defined all of the magnitudes and concepts used throughout this work. It ends with a brief description of some approximate methods to take radiation into account.
The Radiosity Irradiosity Method is introduced in chapter 2. In this chapter it is also described a numerical method to calculate the view factors for axial symmetric geometries. The main results obtained in such geometries are also presented. Although a little disconnected from the rest of the present thesis, the algorithm used to handle "de facto"' three dimensional geometries with computation time just a little longer than two dimensional cases, with no additional memory consumption, is considered worthy enough to be included in this work.
In chapter 3, the Discrete Ordinates Method (DOM) is detailed. The fundamental aspect of this method is the choice of an ordinate set to integrate the radiative transfer equation. The characterization of such valuable ordinate sets is laid out properly. The discretization of the radiative transfer equation is explained in etail. The direct solution procedure is also outlined. Finally, illustrative results obtained with the DOM under several conditions are presented.
In the moment we wish to solve real problems, we face the fact that the absorption and scattering coefficients depend strongly on radiation wavelength. In the present thesis, special emphasis has been placed on studying the radiative properties of real gases in chapter 4. This interest resulted on a bibliographical research on how the wavenumber dependence of the absorption coefficient is modeled and estimated. Furthermore, this bibliographical research was focussed also on numerical models able to handle such wavenumber dependence. Several methods are discussed, and two of them, namely the Weighted Sum of Gray Gases (WSGG) and the Spectral Line Weighted sum of gray gases (SLW), have been implemented to perform non gray calculations. Some significant results are shown.
Plenty of tests have been performed to the numerical code that resulted from the elaboration of this thesis. According to the results obtained, the objectives proposed in this thesis have been satisfied. As a demonstration of the usefulness of the implemented code, it has been succesfully integrated to a general purpose computational fluid dynamics code (DPC), fruit of the effort of many researchers during many years.
Results of the above integration lead to the resolution of combined heat transfer problems, that are analyzed in chapters 5 and 6, where radiative heat transfer is coupled to convection heat transfer. The effect of radiation on the total heat transfer is studied in chapter 5, which has been published as International Journal of Heat and Mass Transfer, volume 47 (issue 2), pages 257--269, year 2004. In chapter 6, the impact of some parameters of the SLW model on a combined heat transfer problem is analyzed. This chapter has been submitted for publication at the Journal of Quantitative Spectroscopy and Radiative Transfer.
Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer". Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.
Pełny tekst źródłaQuintero, de la Garza Rodrigo Javier 1974. "Spheroidization of iron powders by radiative heat transfer". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85328.
Pełny tekst źródłaIncludes bibliographical references (leaves 45-46).
by Rodrigo Javier Quintero de la Garza.
S.M.
Dai, Jin. "Near-Field Radiative Heat Transfer between Plasmonic Nanostructures". Doctoral thesis, KTH, Optik och Fotonik, OFO, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195653.
Pełny tekst źródłaQC 20161111
Luo, Gang. "A cloud fraction and radiative transfer model". Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/25753.
Pełny tekst źródłaSafdari, Mohammad Saeed. "Characterization of Pyrolysis Products from Fast Pyrolysis of Live and Dead Vegetation". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/8807.
Pełny tekst źródłaEnd, Thomas [Verfasser]. "Optimal Control of Nonlocal Radiative Heat Transfer / Thomas End". München : Verlag Dr. Hut, 2012. http://d-nb.info/1021072893/34.
Pełny tekst źródłaKsiążki na temat "Radiative Heat Transfer Rate"
United States. National Aeronautics and Space Administration., red. Nickel-hydrogen battery state of charge during low rate trickle charging. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Nickel-hydrogen battery state of charge during low rate trickle charging. [Washington, DC: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaRadiative heat transfer. Wyd. 2. Amsterdam: Academic Press, 2003.
Znajdź pełny tekst źródłaRadiative heat transfer. New York: McGraw-Hill, 1993.
Znajdź pełny tekst źródłaModest, Michael M. Radiative heat transfer. Maidenhead: McGraw-Hill, 1993.
Znajdź pełny tekst źródłaThermal radiative transfer and properties. New York: Wiley, 1992.
Znajdź pełny tekst źródłaYadav, Rahul, C. Balaji i S. P. Venkateshan. Radiative Heat Transfer in Participating Media. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-99045-9.
Pełny tekst źródłaModest, Michael F., i Daniel C. Haworth. Radiative Heat Transfer in Turbulent Combustion Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27291-7.
Pełny tekst źródłaF, Nogotov E., i Trofimov V. P, red. Radiative heat transfer in two-phase media. Boca Raton, Fla: CRC Press, 1993.
Znajdź pełny tekst źródłaRadiative transfer in nontransparent, dispersed media. Berlin: Springer-Verlag, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Radiative Heat Transfer Rate"
Smoot, L. Douglas, i Philip J. Smith. "Radiative Heat Transfer". W Coal Combustion and Gasification, 349–71. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-9721-3_14.
Pełny tekst źródłaVolokitin, Aleksandr I., i Bo N. J. Persson. "Radiative Heat Transfer". W Electromagnetic Fluctuations at the Nanoscale, 91–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53474-8_6.
Pełny tekst źródłaAkimoto, Hajime, Yoshinari Anoda, Kazuyuki Takase, Hiroyuki Yoshida i Hidesada Tamai. "Radiative Heat Transfer". W An Advanced Course in Nuclear Engineering, 361–74. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55603-9_18.
Pełny tekst źródłaShang, Joseph J. S. "Radiative Heat Transfer". W Classic and High-Enthalpy Hypersonic Flows, 237–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003212362-13.
Pełny tekst źródłaCampbell-Lochrie, Zakary, Carlos Walker-Ravena, Michael Gallagher, Nicholas Skowronski, Eric V. Mueller i Rory M. Hadden. "Effect of Fuel Bed Structure on the Controlling Heat Transfer Mechanisms in Quiescent Porous Flame Spread". W Advances in Forest Fire Research 2022, 1443–48. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_219.
Pełny tekst źródłaSteane, Andrew M. "Radiative heat transfer". W Thermodynamics, 291–98. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198788560.003.0020.
Pełny tekst źródła"Radiative Heat Transfer". W Heat Transfer in Single and Multiphase Systems, 191–244. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064-8.
Pełny tekst źródła"Radiative Heat Transfer". W Mechanical Engineering Series, 171–224. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064.ch4.
Pełny tekst źródłaKobayashi, Shiro, Soo-Ik Oh i Taylan Altan. "Thermo-Viscoplastic Analysis". W Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0015.
Pełny tekst źródłaModest, Michael F. "Nanoscale Radiative Transfer". W Radiative Heat Transfer, 803–17. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-386944-9.50024-8.
Pełny tekst źródłaStreszczenia konferencji na temat "Radiative Heat Transfer Rate"
Chang, S. S., H. H. Chiu i T. S. Lee. "Droplet Combustion With Radiative Heat Transfer". W ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-144.
Pełny tekst źródłaHe, Zhen-Zong, Hong Qi, Qin Chen, Ya-Tao Ren i Li-Ming Ruan. "Effect of Fractal-Like Aggregation on Radiative Properties and Specific Growth Rate of Chlorella". W The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.rad.009531.
Pełny tekst źródłaWang, Jingfu, i Guoqiang Li. "Analysis of Radiation Reabsorption Effects on Flame Characteristics and NOx Emission in Laminar Flames". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23061.
Pełny tekst źródłaYan, Wei-Mon, i Kuan-Tzong Lee. "Natural Convection Heat Transfer in a Vertical Square Duct With Radiation Effects". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0972.
Pełny tekst źródłaArchibold, Antonio Ramos, Muhammad M. Rahman, D. Yogi Goswami i Elias L. Stefanakos. "High Temperature Latent-Heat Thermal Energy Storage Module With Enhanced Combined Mode Heat Transfer". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38766.
Pełny tekst źródłaViskanta, R. "Overview of Radiative Transfer in Cellular Porous Materials". W ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88648.
Pełny tekst źródłaSrinivasa Ramanujam, K., i C. Balaji. "A Fast Polarized Microwave Radiative Transfer Model for a Raining Atmosphere". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22228.
Pełny tekst źródłaConceição, Eusébio, João Gomes, Maria Manuela Lúcio, Domingos Viegas i Teresa Viegas. "Heat Transfer in a Pine Tree Trunk". W 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002775.
Pełny tekst źródłaSeytier, Charline, i Mohammad H. Naraghi. "Combined Convective-Radiative Thermal Analysis of Inclined Roof Top Solar Chimney". W ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54043.
Pełny tekst źródłaBaikin, Mordechai, Yehuda Taitel i Dvora Barnea. "Flow Rate Maldistribution in Multi Heated Parallel Pipes". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22650.
Pełny tekst źródłaRaporty organizacyjne na temat "Radiative Heat Transfer Rate"
Hayes, Steven Lowe. Radiative heat transfer in porous uranium dioxide. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10189532.
Pełny tekst źródłaTencer, John, Kevin Thomas Carlberg, Marvin E. Larsen i Roy E. Hogan. Advanced Computational Methods for Thermal Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), październik 2016. http://dx.doi.org/10.2172/1330205.
Pełny tekst źródłaSchock, Alfred, i M. J. Abbate. Comparison of Methods for Calculating Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), styczeń 2012. http://dx.doi.org/10.2172/1033384.
Pełny tekst źródłaFuchs, Marcel, Ishaiah Segal, Ehude Dayan i K. Jordan. Improving Greenhouse Microclimate Control with the Help of Plant Temperature Measurements. United States Department of Agriculture, maj 1995. http://dx.doi.org/10.32747/1995.7604930.bard.
Pełny tekst źródłaForney, Glenn P. Computing radiative heat transfer occurring in a zone fire model. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4709.
Pełny tekst źródłaAhluwalia, R. K., i K. H. Im. Spectral radiative heat transfer in coal furnaces using a hybrid technique. Office of Scientific and Technical Information (OSTI), marzec 1994. http://dx.doi.org/10.2172/10133030.
Pełny tekst źródłaAhluwalia, R., i K. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/6810345.
Pełny tekst źródłaAhluwalia, R. K., i K. H. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), sierpień 1992. http://dx.doi.org/10.2172/10125191.
Pełny tekst źródłaKirsch, Jared, i Joshua Hubbard. Complementary Study of Radiative Heat Transfer and Flow Physics from Moderate-scale Hydrocarbon Pool Fire Simulations. Office of Scientific and Technical Information (OSTI), listopad 2021. http://dx.doi.org/10.2172/1832312.
Pełny tekst źródłaSkimmons, J. Determing the Radiative Heat Transfer out of the Fireball of an Atmospheric Nuclear Detonation using Experimental Data. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1603242.
Pełny tekst źródła