Artykuły w czasopismach na temat „Radiative Heat Flux Rate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radiative Heat Flux Rate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cheung, C. S., C. W. Leung i T. P. Leung. "Modelling Spatial Radiative Heat Flux Distribution in a Direct Injection Diesel Engine". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 208, nr 4 (listopad 1994): 275–83. http://dx.doi.org/10.1243/pime_proc_1994_208_048_02.
Pełny tekst źródłaZhang, Chong, Zhongnong Zhang i Chun Lou. "Thermodynamic Irreversibility Analysis of Thermal Radiation in Coal-Fired Furnace: Effect of Coal Ash Deposits". Materials 16, nr 2 (13.01.2023): 799. http://dx.doi.org/10.3390/ma16020799.
Pełny tekst źródłaBudaev, Bair V., i David B. Bogy. "The role of EM wave polarization on radiative heat transfer across a nanoscale gap". Journal of Applied Physics 132, nr 5 (7.08.2022): 054903. http://dx.doi.org/10.1063/5.0094382.
Pełny tekst źródłaLiu, L. H., i S. X. Chu. "On the Entropy Generation Formula of Radiation Heat Transfer Processes". Journal of Heat Transfer 128, nr 5 (21.10.2005): 504–6. http://dx.doi.org/10.1115/1.2190695.
Pełny tekst źródłaLiu, Cheng, Evgeni Fedorovich, Jianping Huang, Xiao-Ming Hu, Yongwei Wang i Xuhui Lee. "Impact of Aerosol Shortwave Radiative Heating on Entrainment in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study". Journal of the Atmospheric Sciences 76, nr 3 (1.03.2019): 785–99. http://dx.doi.org/10.1175/jas-d-18-0107.1.
Pełny tekst źródłaHayat, T., M. Waleed Ahmed Khan, M. Ijaz Khan i A. Alsaedi. "Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate". Physica B: Condensed Matter 538 (czerwiec 2018): 95–103. http://dx.doi.org/10.1016/j.physb.2018.01.054.
Pełny tekst źródłaGODBOLE, RV, i RR KELKAR. "Net Terrestrial Radiative Heat Fluxes over India during Monsoon". MAUSAM 20, nr 1 (30.04.2022): 1–10. http://dx.doi.org/10.54302/mausam.v20i1.5421.
Pełny tekst źródłaPalesskiy, F. S. "Numerical Study of Combustion Regimes and Heat Radiation of Cylindrical Porous Burner". Key Engineering Materials 685 (luty 2016): 94–98. http://dx.doi.org/10.4028/www.scientific.net/kem.685.94.
Pełny tekst źródłaNarahari, Marneni, i Noorhana Yahya. "Effects of Time Dependent Temperature and Thermal Radiation on Free Convection Flow in Unsteady Couette Motion". Applied Mechanics and Materials 249-250 (grudzień 2012): 15–21. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.15.
Pełny tekst źródłaDupuy, J. L., i J. Maréchal. "Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating". International Journal of Wildland Fire 20, nr 2 (2011): 289. http://dx.doi.org/10.1071/wf09076.
Pełny tekst źródłaZhai, Chunjie, Fei Peng, Xiaodong Zhou i Lizhong Yang. "Pyrolysis and ignition delay time of poly(methyl methacrylate) exposed to ramped heat flux". Journal of Fire Sciences 36, nr 3 (14.02.2018): 147–63. http://dx.doi.org/10.1177/0734904118757742.
Pełny tekst źródłaBianchi, Daniele, Giuseppe Leccese, Francesco Nasuti, Marcello Onofri i Carmine Carmicino. "Modeling of High Density Polyethylene Regression Rate in the Simulation of Hybrid Rocket Flowfields". Aerospace 6, nr 8 (9.08.2019): 88. http://dx.doi.org/10.3390/aerospace6080088.
Pełny tekst źródłaSunahara, Hiroyuki, Takahiro Ishihara, Ken Matsuyama, Shin’ichi Sugahara i Masahiro Morita. "Relation between Heat Release Rate and Radiative Heat Flux of Wooden Crib Burning during Water Discharge". Fire Science and Technology 30, nr 1 (2011): 1–25. http://dx.doi.org/10.3210/fst.30.1.
Pełny tekst źródłaAn, Chen, Alice Cunha da Silva i Jian Su. "Improved Lumped Models for Transient Combined Convective and Radiative Cooling of Multilayer Spherical Media". Mathematical Problems in Engineering 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8303021.
Pełny tekst źródłaOsman, Abdel-Nasser A., S. M. Abo-Dahab i R. A. Mohamed. "Analytical Solution of Thermal Radiation and Chemical Reaction Effects on Unsteady MHD Convection through Porous Media with Heat Source/Sink". Mathematical Problems in Engineering 2011 (2011): 1–18. http://dx.doi.org/10.1155/2011/205181.
Pełny tekst źródłaCrnomarkovic, Nenad, Miroslav Sijercic, Srdjan Belosevic, Dragan Tucakovic i Titoslav Zivanovic. "Influence of application of Hottel’s zonal model and six-flux model of thermal radiation on numerical simulations results of pulverized coal fired furnace". Thermal Science 16, nr 1 (2012): 271–82. http://dx.doi.org/10.2298/tsci110627126c.
Pełny tekst źródłaSingh, Khilap, i Manoj Kumar. "Influence of Chemical Reaction on Heat and Mass Transfer Flow of a Micropolar Fluid over a Permeable Channel with Radiation and Heat Generation". Journal of Thermodynamics 2016 (7.12.2016): 1–10. http://dx.doi.org/10.1155/2016/8307980.
Pełny tekst źródłaChu, Yu-Ming, M. Ijaz Khan, M. Israr Ur Rehman, Seifedine Kadry i M. K. Nayak. "Flow and thermal management of MHD Cross nanofluids over a thin needle with auto catalysis chemical reactions". International Journal of Modern Physics B 34, nr 30 (28.10.2020): 2050287. http://dx.doi.org/10.1142/s0217979220502872.
Pełny tekst źródłaBilal, M., M. Sagheer i S. Hussain. "On MHD 3D upper convected Maxwell fluid flow with thermophoretic effect using nonlinear radiative heat flux". Canadian Journal of Physics 96, nr 1 (styczeń 2018): 1–10. http://dx.doi.org/10.1139/cjp-2017-0250.
Pełny tekst źródłaIstomin, Vladimir A., Elena V. Kustova i Kirill A. Prutko. "Heat and radiative fluxes in strongly nonequilibrium flows behind shock waves". Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 9, nr 4 (2022): 705–19. http://dx.doi.org/10.21638/spbu01.2022.412.
Pełny tekst źródłaMackolil, Joby, i Basavarajappa Mahanthesh. "Exact and statistical computations of radiated flow of nano and Casson fluids under heat and mass flux conditions". Journal of Computational Design and Engineering 6, nr 4 (21.03.2019): 593–605. http://dx.doi.org/10.1016/j.jcde.2019.03.003.
Pełny tekst źródłaUddin, M. J., W. A. Khan, O. Anwar Bég i A. I. M. Ismail. "Non-Similar Solution of G-jitter Induced Unsteady Magnetohydrodynamic Radiative Slip Flow of Nanofluid". Applied Sciences 10, nr 4 (20.02.2020): 1420. http://dx.doi.org/10.3390/app10041420.
Pełny tekst źródłaBitz, C. M., M. M. Holland, E. C. Hunke i R. E. Moritz. "Maintenance of the Sea-Ice Edge". Journal of Climate 18, nr 15 (1.08.2005): 2903–21. http://dx.doi.org/10.1175/jcli3428.1.
Pełny tekst źródłaHussain, Azad, Aysha Rehman, Sohail Nadeem, M. Riaz Khan i Alibek Issakhov. "A Computational Model for the Radiated Kinetic Molecular Postulate of Fluid-Originated Nanomaterial Liquid Flow in the Induced Magnetic Flux Regime". Mathematical Problems in Engineering 2021 (8.06.2021): 1–17. http://dx.doi.org/10.1155/2021/6690366.
Pełny tekst źródłaBACONNEAU, OLIVIER, JAN BOUWE VAN DEN BERG, CLAUDE-MICHEL BRAUNER i JOSEPHUU HULSHOF. "Multiplicity and stability of travelling wave solutions in a free boundary combustion-radiation problem". European Journal of Applied Mathematics 15, nr 1 (luty 2004): 79–102. http://dx.doi.org/10.1017/s0956792503005333.
Pełny tekst źródłaRahman, M. M., i T. Sultana. "Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium". Nonlinear Analysis: Modelling and Control 13, nr 1 (25.01.2008): 71–87. http://dx.doi.org/10.15388/na.2008.13.1.14590.
Pełny tekst źródłaSARMA, D., N. AHMED i H. DEKA. "MHD FREE CONVECTION AND MASS TRANSFER FLOW PAST AN ACCELERATED VERTICAL PLATE WITH CHEMICAL REACTION IN PRESENCE OF RADIATION". Latin American Applied Research - An international journal 44, nr 1 (31.01.2014): 1–8. http://dx.doi.org/10.52292/j.laar.2014.412.
Pełny tekst źródłaXu, Yan Ying, Ruo Jun Wang, Jian Chen i Lu Chao Li. "Combustion Performance of Composite Floor with Different Radiant Heat Flux". Applied Mechanics and Materials 501-504 (styczeń 2014): 2415–18. http://dx.doi.org/10.4028/www.scientific.net/amm.501-504.2415.
Pełny tekst źródłaKhan, Muhammad Ijaz, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Faisal Javed i Ahmed Alsaedi. "Entropy generation in radiative flow of Ree-Eyring fluid due to due rotating disks". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 6 (3.06.2019): 2057–79. http://dx.doi.org/10.1108/hff-11-2018-0642.
Pełny tekst źródłaTakahashi, Ken. "Radiative Constraints on the Hydrological Cycle in an Idealized Radiative–Convective Equilibrium Model". Journal of the Atmospheric Sciences 66, nr 1 (1.01.2009): 77–91. http://dx.doi.org/10.1175/2008jas2797.1.
Pełny tekst źródłaKetchat, Niwat, i Bundit Krittacom. "Numerical Study of Radiative Heat Flux Emitted by Stainless Wire-Net Porous Media". Key Engineering Materials 861 (wrzesień 2020): 509–13. http://dx.doi.org/10.4028/www.scientific.net/kem.861.509.
Pełny tekst źródłaMurer, Luc, Sarah Chatenet, Gaelle Fontaine, Serge Bourbigot i Olivier Authier. "Influence of model assumptions on charring polymer decomposition in the cone calorimeter". Journal of Fire Sciences 36, nr 3 (15.03.2018): 181–201. http://dx.doi.org/10.1177/0734904118761641.
Pełny tekst źródłaQasim, Muhammad, Tasawar Hayat i Saleem Obaidat. "Radiation Effect on the Mixed Convection Flow of a Viscoelastic Fluid Along an Inclined Stretching Sheet". Zeitschrift für Naturforschung A 67, nr 3-4 (1.04.2012): 195–202. http://dx.doi.org/10.5560/zna.2012-0006.
Pełny tekst źródłaMochizuki, Takashi, i Toshiyuki Awaji. "Summertime Evolution of Decadal Sea Surface Temperature Anomalies in the Midlatitude North Pacific". Journal of Climate 21, nr 7 (1.04.2008): 1569–88. http://dx.doi.org/10.1175/2007jcli1853.1.
Pełny tekst źródłaSUNAHARA, Hiroyuki, Takahiro ISHIHARA, Ken MATSUYAMA, Shin'ichi SUGAHARA i Masahiro MORITA. "A STUDY ON RERATION BETWEEN HEAT RELEASE RATE AND RADIATIVE HEAT FLUX OF WOOD CRIB BURNING DURING WATER DISCHARGE". Journal of Environmental Engineering (Transactions of AIJ) 75, nr 658 (2010): 1009–17. http://dx.doi.org/10.3130/aije.75.1009.
Pełny tekst źródłaZhang, Jia Qing, Bo Si Zhang, Ming Hao Fan, Liu Fang Wang, Xiang Jun Guo i Deng Yang Yu. "Effects of External Heat Radiation on Combustion and Toxic Gas Release of Flame Retardant Cables". Materials Science Forum 898 (czerwiec 2017): 2392–98. http://dx.doi.org/10.4028/www.scientific.net/msf.898.2392.
Pełny tekst źródłaMjankwi, Musa Antidius, Verdiana Grace Masanja, Eunice W. Mureithi i Makungu Ng’oga James. "Unsteady MHD Flow of Nanofluid with Variable Properties over a Stretching Sheet in the Presence of Thermal Radiation and Chemical Reaction". International Journal of Mathematics and Mathematical Sciences 2019 (2.05.2019): 1–14. http://dx.doi.org/10.1155/2019/7392459.
Pełny tekst źródłaAzad, Masoud Torabi, Hesameddin Mehrfar i Mozhgan Emtyazjoo. "A Case Study of Heat Budget in the Southern Caspian Sea, Gorgan Bay, Iran". Marine Technology Society Journal 55, nr 5 (1.09.2021): 150–60. http://dx.doi.org/10.4031/mtsj.55.5.1.
Pełny tekst źródłaKo, Gwon Hyun. "Numerical Study on Heat Radiation Attenuation and Flow Characteristics by Water Mist Curtains". Fire Science and Engineering 36, nr 4 (31.08.2022): 1–7. http://dx.doi.org/10.7731/kifse.b677f696.
Pełny tekst źródłaGnaneswara, Reddy, i Reddy Bhaskar. "Radiation and mass transfer effects on unsteady MHD free convection flow of an incompressible viscous fluid past a moving vertical cylinder". Theoretical and Applied Mechanics 36, nr 3 (2009): 239–60. http://dx.doi.org/10.2298/tam0903239g.
Pełny tekst źródłaSu, Yun, Jiazhen He i Jun Li. "An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation". Textile Research Journal 87, nr 16 (9.08.2016): 1953–67. http://dx.doi.org/10.1177/0040517516660892.
Pełny tekst źródłaJin, Xiaohua, Lingbo Zhang, Xiaoyan Li i Caixia Zhu. "Structural Features and Smoke Resistance of Water Mist Curtain of Upper Spray Nozzle". International Journal of Heat and Technology 38, nr 3 (15.10.2020): 758–66. http://dx.doi.org/10.18280/ijht.380321.
Pełny tekst źródłaMansoor, Saad Bin, i Bekir S. Yilbas. "Estimating Entropy Generation Rate for Ballistic-Diffusive Phonon Transport Using Effective Thermal Conductivity". Journal of Non-Equilibrium Thermodynamics 46, nr 3 (13.05.2021): 321–27. http://dx.doi.org/10.1515/jnet-2020-0113.
Pełny tekst źródłaAhmad, Salman, Khan Ijaz, Ahmed Waleed, Tufail Khan, Tasawar Hayat i Ahmed Alsaedi. "Impact of arrhenius activation energy in viscoelastic nanomaterial flow subject to binary chemical reaction and non-linear mixed convection". Thermal Science 24, nr 2 Part B (2020): 1143–55. http://dx.doi.org/10.2298/tsci180524212a.
Pełny tekst źródłaReddy, M. M. Gnaneswara, i N. Bhaskar Reddy. "Thermal radiation and mass transfer effects on MHD free convection flow past a vertical cylinder with variable surface temperature and concentration". Journal of Naval Architecture and Marine Engineering 6, nr 1 (27.03.2010): 1–15. http://dx.doi.org/10.3329/jname.v6i1.2615.
Pełny tekst źródłaHan, Haidong, Jian Wang, Junfeng Wei i Shiyin Liu. "Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China". Journal of Glaciology 56, nr 196 (2010): 287–96. http://dx.doi.org/10.3189/002214310791968430.
Pełny tekst źródłaBudea, Sanda, i Viorel Badescu. "Fluid Flow Control in Domestic Hot Water Systems During Days with Different Radiative Stability Levels". Annals of West University of Timisoara - Physics 60, nr 1 (1.08.2018): 88–96. http://dx.doi.org/10.2478/awutp-2018-0009.
Pełny tekst źródłaĐorđević, Milan, Velimir Stefanović, Mića Vukić i Marko Mančić. "EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING". Facta Universitatis, Series: Mechanical Engineering 15, nr 3 (9.12.2017): 495. http://dx.doi.org/10.22190/fume171001027d.
Pełny tekst źródłaAbu-Hamdeh, Nidal H., Abdulmalik A. Aljinaidi, Mohamed A. Eltaher, Khalid H. Almitani, Khaled A. Alnefaie, Abdullah M. Abusorrah i Mohammad Reza Safaei. "Implicit Finite Difference Simulation of Prandtl-Eyring Nanofluid over a Flat Plate with Variable Thermal Conductivity: A Tiwari and Das Model". Mathematics 9, nr 24 (7.12.2021): 3153. http://dx.doi.org/10.3390/math9243153.
Pełny tekst źródłaVijayakumar, G., i Ashwani Kumar Kachroo. "Temperature Prediction Methodology for a Missile Flying at Low and High Altitudes". Applied Mechanics and Materials 592-594 (lipiec 2014): 1794–800. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1794.
Pełny tekst źródła