Gotowa bibliografia na temat „Radiations generation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radiations generation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radiations generation"
Hussain, Saba, Ram Kishor Singh i R. P. Sharma. "Strong terahertz field generation by relativistic self-focusing of hollow Gaussian laser beam in magnetoplasma". Laser and Particle Beams 34, nr 1 (9.12.2015): 86–93. http://dx.doi.org/10.1017/s0263034615000981.
Pełny tekst źródłaHu, Qing. "Generation of Terahertz Emission Based on Intersubband Transitions". International Journal of High Speed Electronics and Systems 12, nr 04 (grudzień 2002): 995–1024. http://dx.doi.org/10.1142/s0129156402001897.
Pełny tekst źródłaBakhtiari, Farhad, Shole Golmohammady, Masoud Yousefi, Fatemeh D. Kashani i Bijan Ghafary. "Generation of terahertz radiation in collisional plasma by beating of two dark hollow laser beams". Laser and Particle Beams 33, nr 3 (10.06.2015): 463–72. http://dx.doi.org/10.1017/s026303461500049x.
Pełny tekst źródłaTian, Lin, Lin Chen, Peng Zhang, Bo Hu, Yang Gao i Yidan Si. "The Ground-Level Particulate Matter Concentration Estimation Based on the New Generation of FengYun Geostationary Meteorological Satellite". Remote Sensing 15, nr 5 (5.03.2023): 1459. http://dx.doi.org/10.3390/rs15051459.
Pełny tekst źródłaRehman, Khalil Ur, Wasfi Shatanawi i Andaç Batur Çolak. "Levenberg–Marquardt Training Technique Analysis of Thermally Radiative and Chemically Reactive Stagnation Point Flow of Non-Newtonian Fluid with Temperature Dependent Thermal Conductivity". Mathematics 11, nr 3 (2.02.2023): 753. http://dx.doi.org/10.3390/math11030753.
Pełny tekst źródłaGuo, L., H. W. Zhang i H. C. Wu. "High-frequency radio-wave emission by coherent transition radiation of runaway electrons produced by lightning stepped leaders". Physics of Plasmas 29, nr 9 (wrzesień 2022): 093102. http://dx.doi.org/10.1063/5.0102132.
Pełny tekst źródłaBakhtiari, Farhad, Masoud Yousefi, Shole Golmohammady, Seyed Masoud Jazayeri i Bijan Ghafary. "Generation of terahertz radiation by beating of two circular flat-topped laser beams in collisional plasma". Laser and Particle Beams 33, nr 4 (15.10.2015): 713–22. http://dx.doi.org/10.1017/s026303461500083x.
Pełny tekst źródłaGunel, Imanova, Bekpulatov Ilkhom, Aliyev Anar i Barkaoui Sami. "Importance of the radiations in water splitting for hydrogen generation". Annals of Advances in Chemistry 7, nr 1 (14.03.2023): 031–36. http://dx.doi.org/10.29328/journal.aac.1001040.
Pełny tekst źródłaAli, Suha Ismail Ahmed, i Éva Lublóy. "Radiation shielding structures : Concepts, behaviour and the role of the heavy weight concrete as a shielding material - Rewiev". Concrete Structures 21 (2020): 24–30. http://dx.doi.org/10.32970/cs.2020.1.4.
Pełny tekst źródłaSinghal, Umang, i Yash Pal. "Propellant-Less Thrust Generation - A Review". Applied Mechanics and Materials 852 (wrzesień 2016): 639–45. http://dx.doi.org/10.4028/www.scientific.net/amm.852.639.
Pełny tekst źródłaRozprawy doktorskie na temat "Radiations generation"
Phillips, Richard J. "Monte Carlo generation of Cerenkov radiation". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26090.
Pełny tekst źródłaCorchia, Alessandra. "Generation of terahertz radiation from semiconductors". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620406.
Pełny tekst źródłaWinterfeldt, Carsten. "Generation and control of high-harmonic radiation". Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98219885X.
Pełny tekst źródłaCoffey, Katherine Leigh. "Next-Generation Earth Radiation Budget Instrument Concepts". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/35587.
Pełny tekst źródłaPresented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase.
NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.
Master of Science
Lazzari, Cristiano. "Transistor level automatic generation of radiation-hardened circuits". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2007. http://hdl.handle.net/10183/15506.
Pełny tekst źródłaDeep submicron (DSM) technologies have increased the challenges in circuit designs due to geometry shrinking, power supply reduction, frequency increasing and high logic density. The reliability of integrated circuits is significantly reduced as a consequence of the susceptibility to crosstalk and substrate coupling. In addition, radiation effects are also more significant because particles with low energy, without importance in older technologies, start to be a problem in DSM technologies. All these characteristics emphasize the need for new Electronic Design Automation (EDA) tools. One of the goals of this thesis is to develop EDA tools able to cope with these DSM challenges. This thesis is divided in two major contributions. The first contribution is related to the development of a new methodology able to generate optimized circuits in respect to timing and power consumption. A new design flow is proposed in which the circuit is optimized at transistor level. This methodology allows the optimization of every single transistor according to the capacitances associated to it. Different from the traditional standard cell approach, the layout is generated on demand after a transistor level optimization process. Results show an average 11% delay improvement and more than 30% power saving in comparison with the traditional design flow. The second contribution of this thesis is related with the development of techniques for radiation-hardened circuits. The Code Word State Preserving (CWSP) technique is used to apply timing redundancy into latches and flipflops. This technique presents low area overhead, but timing penalties are totally related with the glitch duration is being attenuated. Further, a new transistor sizing methodology for Single Event Transient (SET) attenuation is proposed. The sizing method is based on an analytic model. The model considers independently pull-up and pull-down blocks. Thus, only transistors directly related to the SET attenuation are sized. Results show smaller area, timing and power consumption overhead in comparison with TMR and CWSP techniques allowing the development of high frequency circuits, with lower area and power overhead.
Wüthrich, Stefan. "Generation and transport of 2,9 [my]m radiation /". Bern, 1991. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Pełny tekst źródłaTempus, Martin. "Generation and coherent transmission of mid-infrared radiation /". Bern, 1993. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Pełny tekst źródłaRoberts, Daniel Rhys Griffin. "Semiconductor devices for generating terahertz radiation". Thesis, Bangor University, 2016. https://research.bangor.ac.uk/portal/en/theses/semiconductor-devices-for-generating-terahertz-radiation(ed1b94db-fa83-4508-9e04-14423e5338b7).html.
Pełny tekst źródłaMartin, Ian Peter Stephen. "Short pulse x-ray generation in synchrotron radiation sources". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:9ac0bcc2-bedb-46d0-b95c-22f4741f45a0.
Pełny tekst źródłaZhou, Jian Ying. "Generation of VUV radiation in xenon using dye lasers". Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47323.
Pełny tekst źródłaKsiążki na temat "Radiations generation"
Wilson, John W. A study of the generation of linear energy transfer spectra for space radiations. Hampton, Va: Langley Research Center, 1992.
Znajdź pełny tekst źródłaWilson, John W. A study of the generation of linear energy transfer spectra for space radiations. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Znajdź pełny tekst źródłaB, Mori Warren, red. Generation of coherent radiation using plasmas. New York: IEEE, 1993.
Znajdź pełny tekst źródłaPhillips, Richard J. Monte Carlo generation of Cerenkov radiation. Monterey, Calif: Naval Postgraduate School, 1989.
Znajdź pełny tekst źródła1916-, Prokhorov A. M., i Institute for Advanced Physics Studies. La Jolla International School of Physics., red. Coherent radiation generation and particle acceleration. New York: American Institute of Physics, 1992.
Znajdź pełny tekst źródłaGold, Don William. High energy electron radiation degradation of gallium arsenide solar cells. Monterey, Calif: Naval Postgraduate School, 1986.
Znajdź pełny tekst źródła1947-, Nori Dattatreyudu, i Hilaris Basil S. 1928-, red. Radiation therapy of gynecological cancer. New York: Liss, 1987.
Znajdź pełny tekst źródłaBeaurepaire, Eric, Hervé Bulou, Loic Joly i Fabrice Scheurer, red. Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03032-6.
Pełny tekst źródłaBarth, Janet L. The radiation environment for the Next Generation Space Telescope (NGST). [Greenbelt, Md.]: Next Generation Space Telescope Project Study Office, Goddard Space Flight Center, 2000.
Znajdź pełny tekst źródłaMarion, William. Solar radiation data manual for buildings. Golden, Colo. (1617 Cole Blvd., Golden 80401-3393): National Renewable Energy Laboratory, 1995.
Znajdź pełny tekst źródłaCzęści książek na temat "Radiations generation"
Hahn, Yoon-Bong, Tahmineh Mahmoudi i Yousheng Wang. "Electromagnetic Radiation". W Next-Generation Solar Cells, 1–12. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003372387-1.
Pełny tekst źródłaHorn, Alexander. "Generation of Electromagnetic Radiation". W The Physics of Laser Radiation–Matter Interaction, 51–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15862-9_2.
Pełny tekst źródłaMadhlopa, Amos. "Solar Radiation Resource". W Principles of Solar Gas Turbines for Electricity Generation, 51–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68388-1_3.
Pełny tekst źródłaWallenstein, R. "Generation of Coherent Tunable Radiation". W Frontiers of Laser Spectroscopy of Gases, 53–61. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3003-2_4.
Pełny tekst źródłaEargle, John M. "Musical Sound Generation and Radiation". W Music, Sound, and Technology, 67–85. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5936-5_4.
Pełny tekst źródłaEargle, John M. "Musical Sound Generation and Radiation". W Music, Sound, and Technology, 63–80. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7070-3_4.
Pełny tekst źródłaDurante, Marco. "Radiation, Space Weather". W Generation and Applications of Extra-Terrestrial Environments on Earth, 17–24. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338277-4.
Pełny tekst źródłaCliffe, Matthew J. "Photoconductive Antenna Generation". W Longitudinally Polarised Terahertz Radiation for Relativistic Particle Acceleration, 99–122. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48643-7_6.
Pełny tekst źródłaLin, A. T. "Relativistic Code Applied to Radiation Generation". W Computer Simulation of Space Plasmas, 103–16. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5321-5_3.
Pełny tekst źródłaZhang, X. C., i Y. Jin. "Generation of THz Radiation from Semiconductors". W Ultra-Wideband, Short-Pulse Electromagnetics 2, 17–24. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1394-4_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Radiations generation"
"Generation, radiations, receiving". W 2004 Second International Workshop Ultrawideband and Ultrashort Impulse Signals. IEEE, 2004. http://dx.doi.org/10.1109/uwbus.2004.1388125.
Pełny tekst źródłaKatto, Masahito, Atsushi Yokotani, Shoichi Kubodera, Masanori Kaku, Akira Hosotani, Noriaki Miyanaga i Kunioki MIma. "Generation of intense vacuum ultraviolet radiations for advanced materials processing". W ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061120.
Pełny tekst źródłaShukla, R., A. Shyam, R. Verma, P. Deb, E. Mishra i M. Meena. "Generation of EM radiations using intense electron beam produced in vacuum". W 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2014. http://dx.doi.org/10.1109/deiv.2014.6961752.
Pełny tekst źródłaFranceschini, A., G. Rodighiero, M. Vaccari, Denis Bastieri i Riccardo Rando. "Background radiations and the cosmic photon-photon opacity". W SCIENCE WITH THE NEW GENERATION OF HIGH ENERGY GAMMA-RAY EXPERIMENTS: Proceedings of the 6th Edition: Bridging the Gap Between GeV and TeV. AIP, 2009. http://dx.doi.org/10.1063/1.3125770.
Pełny tekst źródłaProtasov, Dmitry D., i Vladimir Ya Kostuchenko. "Surface Recombination and Charge Carriers Generation by Radiations in MBE p-HgCdTe Films with Graded-Gap Near-Border Layers". W 2007 8th Siberian Russian Workshop and Tutorial on Electron Devices and Materials. IEEE, 2007. http://dx.doi.org/10.1109/sibedm.2007.4292906.
Pełny tekst źródłaSingh, S. P., V. Mishra i S. K. Varshney. "CW Pumped, Generation of Narrow Linewidth Non-Resonant Mid-IR Radiations in Liquid Filled Single Capillary Assisted Chalcogenide Optical Fibers". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_at.2014.jw2a.74.
Pełny tekst źródłaFaris, Gregory W., i Mark J. Dyer. "Multiphoton Spectroscopy Using Tunable VUV Radiation from a Raman-Shifted Excimer Laser". W Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tua10.
Pełny tekst źródłavan der Veen, J. F. "Synchrotron light of the third and fourth generation — how to fill the generation gap". W SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757721.
Pełny tekst źródłaMoreno, Thierry, Rachid Belkhou, Gilles Cauchon, Mourad Idir i Pascal Mercère. "New Optical Setup for the Generation of Variable Spot Size on Third Generation Synchrotron Beam lines". W SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436097.
Pełny tekst źródła"Generation, radiation, receiving". W 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals. IEEE, 2008. http://dx.doi.org/10.1109/uwbus.2008.4669384.
Pełny tekst źródłaRaporty organizacyjne na temat "Radiations generation"
Bocek, David. Generation and characterization of superradiant undulator radiation. Office of Scientific and Technical Information (OSTI), czerwiec 1997. http://dx.doi.org/10.2172/515579.
Pełny tekst źródłaBocek, D. Generation and Characterization of Superradiant Undulator Radiation. Office of Scientific and Technical Information (OSTI), czerwiec 2018. http://dx.doi.org/10.2172/1454184.
Pełny tekst źródłaThomas, Alexander Roy, i Karl Krushelnick. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1322280.
Pełny tekst źródłaGillilan, Justin. Radiation-Generating Device Safety Self-Study. Office of Scientific and Technical Information (OSTI), styczeń 2022. http://dx.doi.org/10.2172/1840863.
Pełny tekst źródłaJoshi, C. Generation of radiation by intense plasma and electromagnetic undulators. Office of Scientific and Technical Information (OSTI), styczeń 1989. http://dx.doi.org/10.2172/5090989.
Pełny tekst źródłaJoshi, C. Generation of radiation by intense plasma and electromagnetic undulators. Office of Scientific and Technical Information (OSTI), styczeń 1989. http://dx.doi.org/10.2172/6193721.
Pełny tekst źródłaJoshi, C. Generation of radiation by intense plasma and electromagnetic undulators. Office of Scientific and Technical Information (OSTI), październik 1991. http://dx.doi.org/10.2172/5113610.
Pełny tekst źródłaLin, Anthony T. Computer Simulations of Radiation Generation From Relativistic Electron Beams. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1994. http://dx.doi.org/10.21236/ada299008.
Pełny tekst źródłaJoshi, C. Generation of radiation by intense plasma and e. m. undulators. Office of Scientific and Technical Information (OSTI), styczeń 1988. http://dx.doi.org/10.2172/5046181.
Pełny tekst źródłaTrivedi, Sudhir B., Susan W. Kutcher, Witold Palsoz, Martha Berding i Arnold Burger. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride. Office of Scientific and Technical Information (OSTI), listopad 2014. http://dx.doi.org/10.2172/1165052.
Pełny tekst źródła