Gotowa bibliografia na temat „Radiation-induced lymphopenia”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radiation-induced lymphopenia”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radiation-induced lymphopenia"
Wang, Xin, Peiliang Wang, Zongxing Zhao, Qingfeng Mao, Jinming Yu i Minghuan Li. "A review of radiation-induced lymphopenia in patients with esophageal cancer: an immunological perspective for radiotherapy". Therapeutic Advances in Medical Oncology 12 (styczeń 2020): 175883592092682. http://dx.doi.org/10.1177/1758835920926822.
Pełny tekst źródłaSashidharan, Srijith, Azadeh Abravan, Peter Sitch, Cy Howells, Ed Smith i Shermaine Pan. "Radiation-induced lymphopenia with proton beam therapy (PBT)". Clinical Oncology 34 (wrzesień 2022): e2-e3. http://dx.doi.org/10.1016/j.clon.2022.08.009.
Pełny tekst źródłaBallal, Suhas, Shruti Chandak, Karan Ram Lal Gupta i Geetika M. Patel. "A systematic review of the management and implications of radiation-induced lymphopenia and the predictive rate of radiomic-based approaches in lung cancer". Multidisciplinary Reviews 6 (29.01.2024): 2023ss008. http://dx.doi.org/10.31893/multirev.2023ss008.
Pełny tekst źródłaSengupta, Sadhak, Jaclyn Marrinan, Caroline Frishman i Prakash Sampath. "Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy". Clinical and Developmental Immunology 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/831090.
Pełny tekst źródłaYu, Hao, Fang Chen, Li Yang, Jian-Yue Jin i Feng-Ming Spring Kong. "Potential determinants of radiation-induced lymphocyte decrease and lymphopenia in breast cancer patients by machine learning approaches." Journal of Clinical Oncology 39, nr 15_suppl (20.05.2021): e12567-e12567. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e12567.
Pełny tekst źródłaJin, Jian-Yue, Todd Mereniuk, Anirudh Yalamanchali, Weili Wang, Mitchell Machtay, Feng-Ming (Spring)Kong i Susannah Ellsworth. "A framework for modeling radiation induced lymphopenia in radiotherapy". Radiotherapy and Oncology 144 (marzec 2020): 105–13. http://dx.doi.org/10.1016/j.radonc.2019.11.014.
Pełny tekst źródłaGupta, Priti, Min Wang i Steven Lin. "Abstract 1118: Mitigating radiation-induced lymphopenia using interleukin-15: Preclinical rationale for clinical translation". Cancer Research 84, nr 6_Supplement (22.03.2024): 1118. http://dx.doi.org/10.1158/1538-7445.am2024-1118.
Pełny tekst źródłaZhao, Qianqian, Tingting Li, Shisuo Du, Jian He i Zhaochong Zeng. "Shortened Radiation Time Promotes Recovery From Radiation-induced Lymphopenia in Early-Stage Non-small Cell Lung Cancer Patients Treated With Stereotactic Body Radiation Therapy". Technology in Cancer Research & Treatment 21 (styczeń 2022): 153303382211122. http://dx.doi.org/10.1177/15330338221112287.
Pełny tekst źródłaIshida, Naoko, Yukinori Matsuo, Junki Fukuda, Aritoshi Ri, Saori Tatsuno, Takuya Uehara, Masahiro Inada i in. "Radiation-Induced Lymphopenia and Its Impact on Survival in Patients with Brain Metastasis". Current Oncology 31, nr 8 (9.08.2024): 4559–67. http://dx.doi.org/10.3390/curroncol31080340.
Pełny tekst źródłaGomis Selles, E., Ó. Muñoz Muñoz, B. D. Delgado León, P. Cabrera Roldán, A. M. Burgueño Caballero i J. L. López Guerra. "PO-1569 Radiation-induced lymphopenia in pediatric high-risk neuroblastoma". Radiotherapy and Oncology 182 (maj 2023): S1273—S1274. http://dx.doi.org/10.1016/s0167-8140(23)66484-9.
Pełny tekst źródłaRozprawy doktorskie na temat "Radiation-induced lymphopenia"
Pham, Thao Nguyen. "Biοmathematical insights intο radiatiοn-induced systemic immune effects in brain and head & neck cancer using preclinical and clinical mοdels". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC407.
Pełny tekst źródłaRadiotherapy, while effective against tumors, can disturb the immune system and cause lymphopenia, which negatively impacts patient outcomes. Beyond lymphopenia, leukocyte subpopulations of lymphoid and myeloid lineages also have a significant impact on antitumor immune response. More targeted radiation therapies like proton therapy offer promise in reducing lymphopenia. We investigated the impact of brain irradiation on the immune system using biomathematical modeling. Data from various published sources, i.e., clinical trials in humans, animal studies and in vitro data, were used to build the models. A quantitative link between low lymphocyte count and poor patient survival was confirmed using the linear-quadratic model. Modelling accuracy was improved by integrating saturation effects on lymphocyte radiosensitivity (as conceptualized by a new “saturation model” of our own). Modeling based on mice data showed that X-ray therapy significantly reduced lymphocyte counts of multiple subpopulations and induced persistent inflammation while proton therapy had minimal impact on lymphocyte subpopulations, mostly by its ballistic sparing of cervical lymph nodes. Non-linear mixed-effect modeling also showed that while both B and T-lymphocytes recovered after X-ray-induced depletion, tumors could significantly delay B-cell recovery and reduce circulating T cell counts in mice. Additionally, data from a clinical trial in humans suggested that therapeutic radiation doses to lymph nodes significantly affected circulating lymphocyte counts, regardless of the dose to the blood. These findings highlight the importance of considering blood but also lymph node irradiation for preserving the circulating immune cells during and after radiotherapy
Streszczenia konferencji na temat "Radiation-induced lymphopenia"
Rejeb, Mouna Ben, Ines Mlayah, Haifa Rachdi, Dorra Khemir, Rim Moujahed, Lilia Ghorbal i Lotfi Kochbati. "1224 Radiation induced lymphopenia in patients with breast cancer: how can we reduce the risk?" W ESGO 2024 Congress Abstracts. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/ijgc-2024-esgo.1093.
Pełny tekst źródłaSharma, Amrish, Shinya Neri, Bhanu P. Venkatesulu i Steven H. Lin. "Abstract 473: Preclinical model of radiation induced lymphopenia to identify abrogation strategies to enhance cancer therapy". W Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-473.
Pełny tekst źródłaHofer, T., AE Nieto, L. Kaesmann, CJ Pelikan, J. Taugner, S. Mathur, C. Eze, C. Belka, F. Manappov i E. Noessner. "P04.01 Early recovery of radiation induced lymphopenia in NSCLC stage III lung cancer: correlation with prognosis in a prospective study". W iTOC10 - 10th Immunotherapy of Cancer Conference, March 21 – 23, 2024 – Munich, Germany. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-itoc10.36.
Pełny tekst źródła