Gotowa bibliografia na temat „Radial Turbomachinery design”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radial Turbomachinery design”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radial Turbomachinery design"
Schröder, Tilman Raphael, Hans-Josef Dohmen, Dieter Brillert i Friedrich-Karl Benra. "Impact of Leakage Inlet Swirl Angle in a Rotor–Stator Cavity on Flow Pattern, Radial Pressure Distribution and Frictional Torque in a Wide Circumferential Reynolds Number Range". International Journal of Turbomachinery, Propulsion and Power 5, nr 2 (17.04.2020): 7. http://dx.doi.org/10.3390/ijtpp5020007.
Pełny tekst źródłaDenton, J. D., i L. Xu. "The exploitation of three-dimensional flow in turbomachinery design". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 213, nr 2 (1.02.1998): 125–37. http://dx.doi.org/10.1243/0954406991522220.
Pełny tekst źródłaПеревезенцев, Виктор, Viktor Perevezentsev, Максим Шилин i Maksim Shilin. "Improving the design of the seal gaps in the flow of the pumping unit GTK-10-4." Bulletin of Bryansk state technical university 2015, nr 1 (31.03.2015): 35–40. http://dx.doi.org/10.12737/22746.
Pełny tekst źródłaFei, Cheng-Wei, Wen-Zhong Tang, Guang-chen Bai i Zhi-Ying Chen. "A dynamic probabilistic design method for blade-tip radial running clearance of aeroengine high-pressure turbine". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, nr 10 (28.08.2014): 1861–72. http://dx.doi.org/10.1177/0954406214549267.
Pełny tekst źródłaJahn, Ingo, i Peter Jacobs. "Using Meridional Streamline and Passage Shapes to Generate Radial Turbomachinery Geometry and Meshes". Applied Mechanics and Materials 846 (lipiec 2016): 1–6. http://dx.doi.org/10.4028/www.scientific.net/amm.846.1.
Pełny tekst źródłaSiddappaji, Kiran, i Mark G. Turner. "Versatile Tool for Parametric Smooth Turbomachinery Blades". Aerospace 9, nr 9 (31.08.2022): 489. http://dx.doi.org/10.3390/aerospace9090489.
Pełny tekst źródłaKirk, R. G. "Evaluation of AMB Turbomachinery Auxiliary Bearings". Journal of Vibration and Acoustics 121, nr 2 (1.04.1999): 156–61. http://dx.doi.org/10.1115/1.2893958.
Pełny tekst źródłaSchröder, Tilman, Sebastian Schuster i Dieter Brillert. "Experimental Investigation of Centrifugal Flow in Rotor–Stator Cavities at High Reynolds Numbers >108". International Journal of Turbomachinery, Propulsion and Power 6, nr 2 (26.05.2021): 13. http://dx.doi.org/10.3390/ijtpp6020013.
Pełny tekst źródłaSalah, Salma I., Mahmoud A. Khader, Martin T. White i Abdulnaser I. Sayma. "Mean-Line Design of a Supercritical CO2 Micro Axial Turbine". Applied Sciences 10, nr 15 (23.07.2020): 5069. http://dx.doi.org/10.3390/app10155069.
Pełny tekst źródłaYang, Y. L., C. S. Tan i W. R. Hawthorne. "Aerodynamic Design of Turbomachinery Blading in Three-Dimensional Flow: An Application to Radial Inflow Turbines". Journal of Turbomachinery 115, nr 3 (1.07.1993): 602–13. http://dx.doi.org/10.1115/1.2929297.
Pełny tekst źródłaRozprawy doktorskie na temat "Radial Turbomachinery design"
Albusaidi, Waleed. "Techno-economic assessment of radial turbomachinery in process gas applications". Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/9872.
Pełny tekst źródłaThiagarajan, Manoharan. "A Design Study of Single-Rotor Turbomachinery Cycles". Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10076.
Pełny tekst źródłaMaster of Science
Leng, Yujun. "Preliminary design tools in turbomachinery| Non-uniformly spaced blade rows, multistage interaction, unsteady radial waves, and propeller horizontal-axis turbine optimization". Thesis, Purdue University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10149746.
Pełny tekst źródłaTurbomachinery flow fields are inherently unsteady and complex which makes the related CFD analyses computationally intensive. Physically based preliminary design tools are desirable for parametric studies early in the design stage, and to provide deep physical insight and a good starting point for the later CFD analyses. Four analytical/semi-analytical models are developed in this study: 1) a generalized flat plate cascade model for investigating the unsteady aerodynamics of a blade row with non-uniformly spaced blades; 2) a multistage interaction model for investigating rotor-stator interactions; 3) an analytical solution for quantifying the impeller wake convection and pressure wave propagating between a centrifugal compressor impeller and diffuser vane; and 4) a semi-analytical model based Lifting line theory for unified propeller and horizontal-axis turbine optimization. Each model has been thoroughly validated with existing models.
With these models, non-uniformly spaced blade rows and vane clocking are investigated in detail for their potential use as a passive control technique to reduce forced response, flutter and aeroacoustic problems in axial compressors. Parametric studies with different impeller blade numbers and back sweep angles are conducted to investigate their effect on impeller wake and pressure wave propagation. Results show that the scattered pressure waves with high circumferential wave numbers may be an important excitation source to the impeller as their amplitude grows much faster as they travel inwardly than the lower order primary pressure waves. Detailed analysis of Lifting line theory reveals the mathematical and physical equivalence of Lifting line models for propellers and horizontal-axis turbines. With a new implementation, the propeller optimization code can be used for horizontal-axis turbine optimization without any modification. The newly developed unified propeller and horizontal-axis turbine optimization code based on lifting line theory and interior point method has been shown to be a very versatile tool with the capability of hub modelling, working with non-uniform inflow and including extra user specified constraints.
Zangeneh-Kazemi, Mehrdad. "Three-dimensional design of radial-inflow turbines". Thesis, University of Cambridge, 1989. https://www.repository.cam.ac.uk/handle/1810/250944.
Pełny tekst źródłaJi, Min. "Fully three-dimensional and viscous semi-inverse method for axial/radial turbomachine blade design". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2008. http://wwwlib.umi.com/cr/syr/main.
Pełny tekst źródłaVijayaraj, K. "Thermal Turbomachinery Design for Closed Thermal Cycles and Multiple Fluids". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4640.
Pełny tekst źródłaKsiążki na temat "Radial Turbomachinery design"
1913-, Hawthorne William Sir, i United States. National Aeronautics and Space Administration., red. Three-dimensional flow in radial turbomachinery and its impact on design. Cambridge, MA: Gas Turbine Laboratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Enhanced analysis and users manual for radial-inflow turbine conceptual design code RTD. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaWhitfield, A. Design of radial turbomachines. Harlow, Essex, England: Longman Scientific & Technical, 1990.
Znajdź pełny tekst źródłaASME. Print Proceedings of the ASME Turbo Expo 2018 : Turbomachinery Technical Conference and Exposition : Volume 2B : Turbomachinery : Axial Flow Turbine Aerodynamics; Turbomachinery : Noise, Ducts and Interactions; Turbomachinery: Radial Turbomachinery Aerodynamics. American Society of Mechanical Engineers, The, 2018.
Znajdź pełny tekst źródłaThree-dimensional flow in radial turbomachinery and its impact on design. Cambridge, MA: Gas Turbine Laboratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1993.
Znajdź pełny tekst źródłaThree-dimensional flow in radial turbomachinery and its impact on design. Cambridge, MA: Gas Turbine Laboratory, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1993.
Znajdź pełny tekst źródłaNational Aeronautics and Space Administration (NASA) Staff. Three-Dimensional Flow in Radial Turbomachinery and Its Impact on Design. Independently Published, 2019.
Znajdź pełny tekst źródłaWhitfield, A., i N. C. Baines. Design of Radial Turbomachines. Longman, 1990.
Znajdź pełny tekst źródłaCzęści książek na temat "Radial Turbomachinery design"
Macchi, Ennio. "The Use of Radial Equilibrium and Streamline Curvature Methods for Turbomachinery Design and Prediction". W Thermodynamics and Fluid Mechanics of Turbomachinery, 133–66. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5153-2_4.
Pełny tekst źródłaRoy, Apurba Kumar, Supriyo Roy i Kaushik Kumar. "Strategic Designing and Optimization of Mixed Flow Impeller Blades for Maritime Applications". W Handbook of Research on Military, Aeronautical, and Maritime Logistics and Operations, 470–508. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9779-9.ch025.
Pełny tekst źródła"Design methods for radial-flow turbomachines". W The Design of High-Efficiency Turbomachinery and Gas Turbines. The MIT Press, 2014. http://dx.doi.org/10.7551/mitpress/9940.003.0016.
Pełny tekst źródłaStreszczenia konferencji na temat "Radial Turbomachinery design"
Ludewig, Alexander, Gunther Brenner i Kathrin Skinder. "DMD Analysis of Radial Turbomachinery". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82953.
Pełny tekst źródłaCox, Graham D. "Design Point Efficiency of Radial Turbines". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75533.
Pełny tekst źródłaCravero, Carlo. "A Design Methodology for Radial Turbomachinery: Application to Turbines and Compressors". W ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31335.
Pełny tekst źródłaInhestern, Lukas Benjamin, James Braun, Guillermo Paniagua i José Ramón Serrano Cruz. "Design, Optimization and Analysis of Supersonic Radial Turbines". W ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91756.
Pełny tekst źródłaHassan, Ahmed Farid Saad Ayad, Christopher Fuhrer, Markus Schatz i Damian Vogt. "Multi-channel casing design for radial turbine operation control". W European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. European Turbomachinery Society, 2019. http://dx.doi.org/10.29008/etc2019-021.
Pełny tekst źródłaLeto, Angelo. "Radial Turbine Global Design for Liquid Rocket Engine Application". W European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. European Turbomachinery Society, 2019. http://dx.doi.org/10.29008/etc2019-324.
Pełny tekst źródłaKirk, R. G. "Evaluation of AMB Turbomachinery Auxiliary Bearings". W ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4059.
Pełny tekst źródłaWang, Xuesong, Jinju Sun, Changjiang Huo, Guilong Huo i Peng Song. "Design and Flow Analysis of a Radial Outflow Turbo-Expander". W ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90346.
Pełny tekst źródłada Silva, Edna Raimunda, Konstantinos G. Kyprianidis, Michael Säterskog, Ramiro G. Ramirez Camacho i Angie L. Espinosa Sarmiento. "Preliminary Design Optimization of an Organic Rankine Cycle Radial Turbine Rotor". W ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64028.
Pełny tekst źródłaHonavara Prasad, Srikanth, i Daejong Kim. "Scaling Laws of Radial Clearance and Bump Stiffness of Radial Foil Bearings". W ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56704.
Pełny tekst źródła