Gotowa bibliografia na temat „Radial flow compressors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radial flow compressors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radial flow compressors"
Tan, J., X. Wang, D. Qi i R. Wang. "The effects of radial inlet with splitters on the performance of variable inlet guide vanes in a centrifugal compressor stage". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, nr 9 (28.06.2011): 2089–105. http://dx.doi.org/10.1177/0954406211407799.
Pełny tekst źródłaBozza, F., A. Senatore i R. Tuccillo. "Thermal Cycle Analysis and Component Aerodesign for Gas Turbine Concept in Low-Range Cogenerating Systems". Journal of Engineering for Gas Turbines and Power 118, nr 4 (1.10.1996): 792–802. http://dx.doi.org/10.1115/1.2816995.
Pełny tekst źródłaBerezin, A. V., A. F. Kuftov i I. B. Shkurikhin. "Blading impellers of radial-flow compressors". Journal of Machinery Manufacture and Reliability 44, nr 7 (grudzień 2015): 616–25. http://dx.doi.org/10.3103/s1052618815070055.
Pełny tekst źródłaPrata, A. T., J. R. S. Fernandes i F. Fagotti. "PISTON LUBRICATION IN RECIPROCATING COMPRESSORS". Revista de Engenharia Térmica 1, nr 1 (30.06.2001): 56. http://dx.doi.org/10.5380/reterm.v1i1.3501.
Pełny tekst źródłaEriksson, Lars-Erik. "Simulation of transonic flow in radial compressors". Computer Methods in Applied Mechanics and Engineering 64, nr 1-3 (październik 1987): 95–111. http://dx.doi.org/10.1016/0045-7825(87)90035-1.
Pełny tekst źródłaSong, J. W., M. Raheel i A. Engeda. "A compressible flow theory for regenerative compressors with aerofoil blades". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, nr 11 (1.11.2003): 1241–57. http://dx.doi.org/10.1243/095440603771665269.
Pełny tekst źródłaDutton, J. C., P. Piemsomboon i P. E. Jenkins. "Flowfield and Performance Measurements in a Vaned Radial Diffuser". Journal of Fluids Engineering 108, nr 2 (1.06.1986): 141–47. http://dx.doi.org/10.1115/1.3242553.
Pełny tekst źródłaPrata, A. T., J. R. S. Fernandes i F. Fagotti. "Dynamic Analysis of Piston Secondary Motion for Small Reciprocating Compressors". Journal of Tribology 122, nr 4 (4.04.2000): 752–60. http://dx.doi.org/10.1115/1.1314603.
Pełny tekst źródłaRodgers, C. "Impingement Starting and Power Boosting of Small Gas Turbines". Journal of Engineering for Gas Turbines and Power 107, nr 4 (1.10.1985): 821–27. http://dx.doi.org/10.1115/1.3239817.
Pełny tekst źródłaHan, Fenghui, Zhe Wang, Yijun Mao, Jiajian Tan i Wenhua Li. "Flow Control of Radial Inlet Chamber and Downstream Effects on a Centrifugal Compressor Stage". Applied Sciences 11, nr 5 (1.03.2021): 2168. http://dx.doi.org/10.3390/app11052168.
Pełny tekst źródłaRozprawy doktorskie na temat "Radial flow compressors"
Pelton, Robert John. "One-Dimensional Radial Flow Turbomachinery Performance Modeling". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2192.pdf.
Pełny tekst źródłaReyes, Belmonte Miguel Ángel. "Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines". Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/34777.
Pełny tekst źródłaReyes Belmonte, MÁ. (2013). Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34777
TESIS
Nolan, Sean Patrick Rock. "Effect of radial transport on compressor tip clearance flow structures and enhancement of stable flow range". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32435.
Pełny tekst źródłaIncludes bibliographical references (p. 66-67).
The relation between tip clearance flow structure and axial compressor stall is interrogated via numerical simulations, to determine how casing treatment can result in improved flow range. Both geometry changes and flow field body forces are used as diagnostics to assess the hypothesis that the radial transport of momentum out of the tip region, and the consequent decrease in streamwise momentum in this region, is a key aspect of the flow. The radial velocity responsible for this transport is a result of the flow field set up by the tip clearance vortex. Altering the position of the tip clearance vortex can alter the amount of streamwise momentum lost due to radial transport and hence increase the compressor flow range. Circumferential grooves improve the flow range in the manner described above. In the presence of such a groove the radial velocity profile along the passage can be altered so that that the radial transport of streamwise momentum is decreased. The flow fields associated with grooves at different axial positions, and of different depths, are also examined, along with previous research on circumferential grooves, and it is shown that these are in accord with the hypothesis.
by Sean Nolan
S.M.
Ferreira, Adriano Domingos. "Simulação do escoamento bifásico da mistura óleo-refrigerante através da folga radial de compressores rotativos de pistão rolante /". Ilha Solteira : [s.n.], 2006. http://hdl.handle.net/11449/88881.
Pełny tekst źródłaBanca: André Luiz Seixlack
Banca: Paulo Eduardo Lopes Barbieri
Resumo: Devido à solubilidade mútua entre o fluido refrigerante e o fluido lubrificante usados em sistemas de refrigeração por compressão de vapor, eles formam uma mistura homogênea que influencia tanto os processos de transferência de calor no evaporador e no condensador, como os processos de lubrificação e de selagem de vazamentos no interior do compressor. O vazamento de refrigerante através da folga radial de compressores rotativos de pistão rolante é de particular importância para o bom desempenho do compressor, uma vez que ele influencia significativamente a eficiência volumétrica do compressor, chegando a somar cerca de 30% das perdas totais de refrigerante. No presente trabalho foram desenvolvidos modelos de escoamento de misturas óleo-refrigerante através desta folga, incluindo a mudança de fase do refrigerante devida à variação da sua solubilidade no lubrificante. A solução da equação da energia constitui uma evolução do processo de modelagem deste escoamento em relação aos modelos até então desenvolvidos. Quatro modelos diferentes foram usados para simular o escoamento: modelo de escoamento bifásico homogêneo isotérmico, modelo de escoamento bifásico isotérmico com formação de espuma, modelo de escoamento bifásico homogêneo não-isotérmico e modelo de escoamento bifásico homogêneo não-isotérmico com termo de força inercial. O estudo foi realizado para três misturas óleo-refrigerante: óleo éster Freol a10 e refrigerante R134a, óleo éster EMKARATE RL10H e refrigerante R134a e óleo mineral SUNISO 1 GS e refrigerante R12. Para todos os modelos e misturas, realizou-se um estudo paramétrico envolvendo as principais variáveis do problema: pressão de entrada, temperatura de entrada, vazão de mistura e valor da folga mínima... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Due to the mutual solubility between the refrigerant and lubricant of refrigeration systems using mechanical compression of vapor, they form a homogeneous mixture which influences the heat transfer processes in the evaporator and condenser as well as the compressor lubrication and refrigerant leakage. The refrigerant leakage through the radial clearance of rolling piston compressors plays an important role to the volumetric efficiency in this type of compressor, in which it represents about 30% of the total refrigerant loss. In the present work several models to predict the lubricant-refrigerant mixture flow through this clearance, including the refrigerant phase change due to the reduction of the refrigerant solubility in the lubricant, are developed. Four different models were developed to simulate the flow: isothermal homogeneous two-phase flow, isothermal two-phase flow with foam formation, non-isothermal homogeneous two-phase flow and non-isothermal homogeneous two-phase flow containing inertial force. The simulations were performed for three mixtures: ester oil Freol a10-refrigerant R134a, ester oil EMKARATE RL10H-refrigerant R134a, and mineral oil SUNISO 1 GS-refrigerant R12. The influences of the inlet pressure, inlet temperature, mixture mass flow rate, and minimal clearance were analyzed for all mixtures. The results showed that it is important to consider the foam formation, the inertial force, and the solution of the energy equation in the flow modeling. Concerning the volumetric efficiency of the compressor the ester oil Freol a10-R134a was the best mixture because it produced the lowest refrigerant leakage.
Mestre
Ferreira, Adriano Domingos [UNESP]. "Simulação do escoamento bifásico da mistura óleo-refrigerante através da folga radial de compressores rotativos de pistão rolante". Universidade Estadual Paulista (UNESP), 2006. http://hdl.handle.net/11449/88881.
Pełny tekst źródłaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Devido à solubilidade mútua entre o fluido refrigerante e o fluido lubrificante usados em sistemas de refrigeração por compressão de vapor, eles formam uma mistura homogênea que influencia tanto os processos de transferência de calor no evaporador e no condensador, como os processos de lubrificação e de selagem de vazamentos no interior do compressor. O vazamento de refrigerante através da folga radial de compressores rotativos de pistão rolante é de particular importância para o bom desempenho do compressor, uma vez que ele influencia significativamente a eficiência volumétrica do compressor, chegando a somar cerca de 30% das perdas totais de refrigerante. No presente trabalho foram desenvolvidos modelos de escoamento de misturas óleo-refrigerante através desta folga, incluindo a mudança de fase do refrigerante devida à variação da sua solubilidade no lubrificante. A solução da equação da energia constitui uma evolução do processo de modelagem deste escoamento em relação aos modelos até então desenvolvidos. Quatro modelos diferentes foram usados para simular o escoamento: modelo de escoamento bifásico homogêneo isotérmico, modelo de escoamento bifásico isotérmico com formação de espuma, modelo de escoamento bifásico homogêneo não-isotérmico e modelo de escoamento bifásico homogêneo não-isotérmico com termo de força inercial. O estudo foi realizado para três misturas óleo-refrigerante: óleo éster Freol a10 e refrigerante R134a, óleo éster EMKARATE RL10H e refrigerante R134a e óleo mineral SUNISO 1 GS e refrigerante R12. Para todos os modelos e misturas, realizou-se um estudo paramétrico envolvendo as principais variáveis do problema: pressão de entrada, temperatura de entrada, vazão de mistura e valor da folga mínima...
Due to the mutual solubility between the refrigerant and lubricant of refrigeration systems using mechanical compression of vapor, they form a homogeneous mixture which influences the heat transfer processes in the evaporator and condenser as well as the compressor lubrication and refrigerant leakage. The refrigerant leakage through the radial clearance of rolling piston compressors plays an important role to the volumetric efficiency in this type of compressor, in which it represents about 30% of the total refrigerant loss. In the present work several models to predict the lubricant-refrigerant mixture flow through this clearance, including the refrigerant phase change due to the reduction of the refrigerant solubility in the lubricant, are developed. Four different models were developed to simulate the flow: isothermal homogeneous two-phase flow, isothermal two-phase flow with foam formation, non-isothermal homogeneous two-phase flow and non-isothermal homogeneous two-phase flow containing inertial force. The simulations were performed for three mixtures: ester oil Freol a10-refrigerant R134a, ester oil EMKARATE RL10H-refrigerant R134a, and mineral oil SUNISO 1 GS-refrigerant R12. The influences of the inlet pressure, inlet temperature, mixture mass flow rate, and minimal clearance were analyzed for all mixtures. The results showed that it is important to consider the foam formation, the inertial force, and the solution of the energy equation in the flow modeling. Concerning the volumetric efficiency of the compressor the ester oil Freol a10-R134a was the best mixture because it produced the lowest refrigerant leakage.
Guillou, Erwann. "Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321371782.
Pełny tekst źródłaAnhê, Junior Sérgio Antônio [UNESP]. "Investigação numérica e experimental do escoamento em válvulas de compressores herméticos". Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/88864.
Pełny tekst źródłaFundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA)
O presente trabalho refere-se à investigação experimental e numérica do escoamento em difusores radiais, que são usados como modelos de representação de sistemas de válvulas de compressores de refrigeração. Uma bancada experimental é projetada, construída e validada para medir a distribuição de pressão, sobre o disco frontal de um difusor radial de razão de diâmetro 3, para números de Reynolds de 1500 a 9000 e afastamento entre os discos frontal e anterior variando de 0,415mm a 0,705mm aproximadamente. Paralelamente, desenvolve-se um código computacional, baseado na metodologia de Volumes Finitos para malhas desencontradas, para simular o escoamento na geometria do difusor radial. O código computacional é primeiramente validado por meio dos resultados experimentais obtidos da bancada construída. Após sua validação, o código é usado para analisar o escoamento em um difusor de razão de diâmetro igual a 1,4, para números de Reynolds variando de 500 a 2500 e afastamento entre discos na fixa de 0,125 a 1,0mm. Os resultados numéricos mostram o surgimento de recirculação extendendo-se em toda região do difusor. Além disso, os resultados de perfil de pressão sobre o disco frontal fornecem forças e quedas totais de pressão no difusor que aumentam com o número de Reynolds e afastamento entre disco. Esse comportamento produz um ponto de mínima área efetiva de força localizado na faixa de , para números de Reynolds variando de 500 a 1500. Para número de Reynolds mais elevados, , a área efetiva de força sempre aumenta com o aumento do afastamento entre discos. A área efetiva de escoamento, outro parâmetro de interesse para a simulação do compressor, apresenta um crescimento linear com o afastamento entre discos, independentemente do número de Reynolds avaliado.
In this work, an experimental and numerical investigation of the flow in radial diffusers representing the valve system of refrigeration compressor is accomplished. An experimental bench is designed, build, and validated allowing the measurement of the pressure distribution on the frontal disk surface of a radial diffuser with diameter ratio equal to 3, for Reynolds number varying from 1500 to 9000 and distances between disks in the ranges of 0.415 to 0.705mm. In addition, a computational code based on the Finite Volume Methodology for staggered mesh is developed in order to simulate the flow though the radial diffuser. The computational code is firstly validated by using the experimental data obtained from the experimental bench. After its validation, the code is used for analyzing the flow through a radial diffuser with diameter ratio equal to 1.4, for Reynolds numbers varying from 500 to 2500 and distance between disks in the range of 0.125 a 1.0 mm. The numerical results showed recirculation regions extending through the whole diffuser for the majority of the analyzed cases. The pressure profiles on the frontal disk surface produce forces and total pressure drops through the diffuser that increase with both Reynolds number and distance between disks. There is a minimum effective force area in the range of , for Reynolds numbers varying from 500 a 1500. For higher Reynolds numbers, , the effective force area always increases for increasing distance between disks. The effective flow area, another parameter used for simulating the compressor, increases linearly with the distance between disks, independently of the Reynolds number.
Salameh, Georges. "Caractérisation expérimentale d’une turbine de suralimentation automobile et modélisation de ses courbes caractéristiques de fonctionnement". Thesis, Ecole centrale de Nantes, 2016. http://www.theses.fr/2016ECDN0006/document.
Pełny tekst źródłaEngine downsizing is potentially one of the most effective strategies being explored to improve fuel economy and reduce emissions. In the field of turbocharging,simulation is limited by the operating characteristics of turbines supplied by the manufacturers. An accurate and precise extrapolation of the turbine performance maps is the main aim of this study. An experimental study was done on a radial turbine of a turbocharger with different techniques to measure the wider turbine performance map possible. Measurements were done on a classic turbocharger test bench with different turbine inlet temperatures. Then air was blown to the compressor inlet and exit: it is the compressor “gavage”. The compressor is then replaced with another one with are versed rotor: this compressor can help the turbine turn and even drive it itself. The lowest mass flow rates are measured even the negative ones. An electromechanical turbine test bench was developed but did not work correctly because of technical problems but future developments are promising. The various experimental techniques used allowed also the measurement of the turbine isentropic efficiency and the turbocharger mechanical efficiency. Finally, many extrapolation models of the turbine performance maps were tested and compared to the experimental results
Zygmont, Martin. "Reverzační turbokompresor". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229815.
Pełny tekst źródłaAnhê, Júnior Sergio Antônio. "Investigação numérica e experimental do escoamento em válvulas de compressores herméticos /". Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/88864.
Pełny tekst źródłaBanca: André Luiz Seixlack
Banca: Odenir de Almeida
Resumo: O presente trabalho refere-se à investigação experimental e numérica do escoamento em difusores radiais, que são usados como modelos de representação de sistemas de válvulas de compressores de refrigeração. Uma bancada experimental é projetada, construída e validada para medir a distribuição de pressão, sobre o disco frontal de um difusor radial de razão de diâmetro 3, para números de Reynolds de 1500 a 9000 e afastamento entre os discos frontal e anterior variando de 0,415mm a 0,705mm aproximadamente. Paralelamente, desenvolve-se um código computacional, baseado na metodologia de Volumes Finitos para malhas desencontradas, para simular o escoamento na geometria do difusor radial. O código computacional é primeiramente validado por meio dos resultados experimentais obtidos da bancada construída. Após sua validação, o código é usado para analisar o escoamento em um difusor de razão de diâmetro igual a 1,4, para números de Reynolds variando de 500 a 2500 e afastamento entre discos na fixa de 0,125 a 1,0mm. Os resultados numéricos mostram o surgimento de recirculação extendendo-se em toda região do difusor. Além disso, os resultados de perfil de pressão sobre o disco frontal fornecem forças e quedas totais de pressão no difusor que aumentam com o número de Reynolds e afastamento entre disco. Esse comportamento produz um ponto de mínima área efetiva de força localizado na faixa de , para números de Reynolds variando de 500 a 1500. Para número de Reynolds mais elevados, , a área efetiva de força sempre aumenta com o aumento do afastamento entre discos. A área efetiva de escoamento, outro parâmetro de interesse para a simulação do compressor, apresenta um crescimento linear com o afastamento entre discos, independentemente do número de Reynolds avaliado.
Abstract: In this work, an experimental and numerical investigation of the flow in radial diffusers representing the valve system of refrigeration compressor is accomplished. An experimental bench is designed, build, and validated allowing the measurement of the pressure distribution on the frontal disk surface of a radial diffuser with diameter ratio equal to 3, for Reynolds number varying from 1500 to 9000 and distances between disks in the ranges of 0.415 to 0.705mm. In addition, a computational code based on the Finite Volume Methodology for staggered mesh is developed in order to simulate the flow though the radial diffuser. The computational code is firstly validated by using the experimental data obtained from the experimental bench. After its validation, the code is used for analyzing the flow through a radial diffuser with diameter ratio equal to 1.4, for Reynolds numbers varying from 500 to 2500 and distance between disks in the range of 0.125 a 1.0 mm. The numerical results showed recirculation regions extending through the whole diffuser for the majority of the analyzed cases. The pressure profiles on the frontal disk surface produce forces and total pressure drops through the diffuser that increase with both Reynolds number and distance between disks. There is a minimum effective force area in the range of , for Reynolds numbers varying from 500 a 1500. For higher Reynolds numbers, , the effective force area always increases for increasing distance between disks. The effective flow area, another parameter used for simulating the compressor, increases linearly with the distance between disks, independently of the Reynolds number.
Mestre
Książki na temat "Radial flow compressors"
Chung-hua, Wu. A general theory of two-and three-dimensional rotational flow in subsonic and transonic turbomachines. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Znajdź pełny tekst źródłaChung-hua, Wu. A general theory of two-and three-dimensional rotational flow in subsonic and transonic turbomachines. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Znajdź pełny tekst źródłaCenter, Lewis Research, red. A three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaCenter, Lewis Research, red. A three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaCenter, Lewis Research, red. A three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaCenter, Lewis Research, red. A three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaA three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaA three-dimensional axisymmetric calculation procedure for turbulent flows in a radial vaneless diffuser. Cleveland, Ohio: Lewis Research Center, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Radial flow compressors"
Enghardt, Lars, Armin Faßbender i Jakob Hurst. "Sound Sources of Radial Compressors—A Numerical Study on the Outlet Side". W Flinovia—Flow Induced Noise and Vibration Issues and Aspects-II, 71–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76780-2_5.
Pełny tekst źródłaVeress, Árpád, i René Van den Braembussche. "New Approach to Radial Compressor Return Channel Design". W Modelling Fluid Flow, 389–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08797-8_27.
Pełny tekst źródłaEvers, W., M. Heinrich, I. Teipel i A. R. Wiedermann. "Flow Simulation in a High-Loaded Radial Compressor". W Notes on Numerical Fluid Mechanics (NNFM), 461–75. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-89849-4_33.
Pełny tekst źródłaHeinrich, M., i I. Teipel. "Flow Simulation in an Aerodynamic Diffusor of a High Loaded Radial Compressor using Different Turbulence Models". W Advances in Fluid Mechanics and Turbomachinery, 39–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72157-1_4.
Pełny tekst źródła"Efficiency Definitions for Compressors". W Radial Flow Turbocompressors, 106–34. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108241663.006.
Pełny tekst źródła"Throughflow Code for Radial Compressors". W Radial Flow Turbocompressors, 480–527. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108241663.017.
Pełny tekst źródła"Radial Impeller Flow Calculation". W Design and Analysis of Centrifugal Compressors, 61–111. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119424086.ch3.
Pełny tekst źródła"Compressor Instability and Control". W Radial Flow Turbocompressors, 565–600. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108241663.019.
Pełny tekst źródłaStreszczenia konferencji na temat "Radial flow compressors"
Pauer, Reinhard, i Norbert Mu¨ller. "Impeller Design for Radial and Mixed Flow Compressors". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61926.
Pełny tekst źródłaCozzi, Lorenzo, Filippo Rubechini, Matteo Giovannini, Michele Marconcini, Andrea Arnone, Andrea Schneider i Pio Astrua. "Capturing Radial Mixing in Axial Compressors With CFD". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75942.
Pełny tekst źródłaCasey, Michael, Christof Zwyssig i Chris Robinson. "The Cordier Line for Mixed Flow Compressors". W ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22549.
Pełny tekst źródłaKaldellis, J. K., P. D. Ktenidis i D. E. Kodossakis. "Energy Exchange and Secondary Losses Prediction in High Speed Axial and Radial Compressors". W ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-229.
Pełny tekst źródłaSpraker, Wilbur A. "Clearance and Reynolds Number Effects on the Efficiency of Radial Flow Compressors". W International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910417.
Pełny tekst źródłaQian, Zeng. "Numerical Studies of Diffuser Inlet Configurations for Small Flow Rate Radial Compressors". W ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50612.
Pełny tekst źródłaLüdtke, Klaus. "Centrifugal Process Compressors: Radial vs. Tangential Suction Nozzles". W ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-80.
Pełny tekst źródłaBartelt, Michael, Thomas Kwitschinski, Thomas Ceyrowsky, Daniel Grates i Joerg R. Seume. "Experimental and Numerical Investigation of Different Rectangular Volute Geometries for Large Radial Compressors". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46296.
Pełny tekst źródłaSaladino, Anthony J., i Stephen J. Bielecki. "Streamlining of the Radial Inlet Design Process for Centrifugal Compressors". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39590.
Pełny tekst źródłaSato, K., i L. He. "A Numerical Study on Performances of Centrifugal Compressor Stages With Different Radial Gaps". W ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0462.
Pełny tekst źródłaRaporty organizacyjne na temat "Radial flow compressors"
Beavers. L51557 Pressure Losses in Compressor Station Yard Pipework - Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1987. http://dx.doi.org/10.55274/r0010277.
Pełny tekst źródłaJay. L51710 Active Noise Silencing. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), styczeń 1994. http://dx.doi.org/10.55274/r0010333.
Pełny tekst źródła