Gotowa bibliografia na temat „Radial flow compressors”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radial flow compressors”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Radial flow compressors"

1

Tan, J., X. Wang, D. Qi, and R. Wang. "The effects of radial inlet with splitters on the performance of variable inlet guide vanes in a centrifugal compressor stage." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225, no. 9 (2011): 2089–105. http://dx.doi.org/10.1177/0954406211407799.

Pełny tekst źródła
Streszczenie:
Variable inlet guide vanes (VIGVs) can regulate pressure ratio and mass flow at constant rotational speed in centrifugal compressors as a result of inducing a controlled prewhirl in front of impellers. Radial inlets and VIGVs are typical upstream components in front of the first-stage impellers in many industrial centrifugal compressors. However, previous investigations on VIGVs in centrifugal compressors were mostly conducted under the condition of axial inlets, and this study aims to focus on the effects of radial inlet on the VIGVs performance of a centrifugal compressor stage. The axial inlet stage model is compared with the radial inlet stage model with splitters using numerical flow simulation. The flow from the radial inlet was non-uniform in both circumferential and radial directions; thus, the VIGVs, the impeller, the vaneless diffuser, and the return vane channel are modelled with fully 360° passages. The three-dimensional (3D) flow field is numerically simulated at VIGVs setting angles ranging from - 20° to 60°. The overall stage performance parameters are obtained by integrating the field quantities. Though the splitters are equipped in the radial inlet, the overall stage polytropic efficiency decreases by an average of 4 per cent and total pressure ratio decreases by an average of 3.3per cent in comparison with the axial stage model. This can be attributed to the effect of both flow non-uniformity induced by radial inlet and flow loss in the radial inlet at different VIGV setting angles. The flow loss in the radial inlet with splitters is the main reason of the stage performance decrease compared with the flow non-uniformity. The simulation results show that the performance of VIGVs is degraded by its inlet flow distortions resulting from a radial inlet. The results in this study can be applied to centrifugal compressor design and optimization.
Style APA, Harvard, Vancouver, ISO itp.
2

Bozza, F., A. Senatore, and R. Tuccillo. "Thermal Cycle Analysis and Component Aerodesign for Gas Turbine Concept in Low-Range Cogenerating Systems." Journal of Engineering for Gas Turbines and Power 118, no. 4 (1996): 792–802. http://dx.doi.org/10.1115/1.2816995.

Pełny tekst źródła
Streszczenie:
The authors link together their previous experiences in gas turbine plant analysis and aerodynamic design of radial flow compressors. In recent papers they have introduced a method for the performance estimation of gas turbine engines, based on the prediction of the matching conditions among the several components in the whole operating range. On the other hand they have expressly paid attention to the problem of optimal design of radial flow compressors for satisfactory operation within an assigned operating range. In this paper, the authors present an integrated method, which aims to define the optimal characteristics of a low-power gas turbine engine (i.e., in the range 500–2000 kW). In this case, the radial compressor performance plays an important role as regards gas turbine operation for both power generation and cogeneration applications. The analysis proceeds with the optimization of rotating components (i.e., radial compressor and axial flow turbine) for given thermal cycle parameters. The prescribed objectives of the optimizing procedure are related to performance levels not only at the reference design conditions but also throughout the operating field. A particular emphasis is given to the extension of the field of satisfactory performance for cogeneration applications, with best fitting of mechanical and thermal power requirements. The aerodynamic design of radial flow compressor utilizes a method based on genetic algorithms.
Style APA, Harvard, Vancouver, ISO itp.
3

Berezin, A. V., A. F. Kuftov, and I. B. Shkurikhin. "Blading impellers of radial-flow compressors." Journal of Machinery Manufacture and Reliability 44, no. 7 (2015): 616–25. http://dx.doi.org/10.3103/s1052618815070055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Prata, A. T., J. R. S. Fernandes, and F. Fagotti. "PISTON LUBRICATION IN RECIPROCATING COMPRESSORS." Revista de Engenharia Térmica 1, no. 1 (2001): 56. http://dx.doi.org/10.5380/reterm.v1i1.3501.

Pełny tekst źródła
Streszczenie:
Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the refrigerant leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance; certainly a significant factor in the compressor energy consumption. In the present contribution a numerical simulation of the piston movement inside the cylinder of a reciprocating compressor is performed. The compressor considered here is a small hermetic compressor employed in domestic refrigerators. For the problem formulation both the axial and the radial piston motion is considered. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between sealing of the gas leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. The forces acting on the piston are the hydrodynamic force due to the pressure build up in the oil film (lubrication effects), the force due to the connecting rod, the viscous force associated with the relative motion between the piston and oil, and the force exerted by the gas on the top of the piston. All corresponding moments are also included in the problem formulation of the piston dynamics, in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, its sealing performance and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. The complexity of the piston movement in reciprocating compressors was demonstrated and the detailed model presented can be employed as an useful tool for engineering design.
Style APA, Harvard, Vancouver, ISO itp.
5

Eriksson, Lars-Erik. "Simulation of transonic flow in radial compressors." Computer Methods in Applied Mechanics and Engineering 64, no. 1-3 (1987): 95–111. http://dx.doi.org/10.1016/0045-7825(87)90035-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Song, J. W., M. Raheel, and A. Engeda. "A compressible flow theory for regenerative compressors with aerofoil blades." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, no. 11 (2003): 1241–57. http://dx.doi.org/10.1243/095440603771665269.

Pełny tekst źródła
Streszczenie:
Regenerative flow compressors (RFCs) are rotodynamic machines capable of producing high heads at very low flowrates. They have very low specific speed and share some of the characteristics of positive displacement machines such as a roots blower, but without the problems of lubrication and wear. They can produce heads equivalent to that of several centrifugal stages from a single rotor with comparable tip speed. The compression process is usually not regarded as efficient. Typically they produce efficiency of less than 50 per cent but still they have found many applications because they allow the use of fluid dynamic compressors in place of positive displacement compressors for duties requiring high heads at low flowrates. There are very few mathematical models in the literature that explain the behaviour of regenerative turbomachines and predict the performance. Most of these models assumed incompressible flow, thus limiting their use to only pumps and blowers. Moreover, they needed extensive experimental support for performance prediction. Hence, it is very interesting from an industrial point of view to find efficient theoretical means that are able to forecast regenerative compressor performances, using easy to find geometric and fluid dynamic parameters. A compressible flow theory is thus presented for the first time in this paper to describe complex three-dimensional corkscrew flow patterns in regenerative compressors. Conventional RFC were designed with radial, non-radial or semicircular impeller blades. In the present investigation, the authors have discussed RFCs with aerofoil blades and an annular flow channel containing a core to direct circulating flow to the blades with a minimum amount of losses. The effects of various geometric elements on the performance of RFCs are studied. All the major sources of losses in blade and channel region are identified. Governing equations for the flow in the compressor are derived and a performance prediction code based on governing equations and loss models is developed. Theoretical performance results are compared with published test data on aerofoil blade RFCs. Based on sensitivity analysis from the code, design changes are suggested for performance improvement.
Style APA, Harvard, Vancouver, ISO itp.
7

Dutton, J. C., P. Piemsomboon, and P. E. Jenkins. "Flowfield and Performance Measurements in a Vaned Radial Diffuser." Journal of Fluids Engineering 108, no. 2 (1986): 141–47. http://dx.doi.org/10.1115/1.3242553.

Pełny tekst źródła
Streszczenie:
The flow characteristics of a vaned diffuser typical of those currently used in centrifugal compressors have been determined experimentally by using a static diffuser test rig. The vortex test vehicle (VTV) portion of this rig was used to simulate the essential features of the flow leaving the impeller of an actual compressor. The mean flow phenomena at the diffuser entrance and the static pressure recovery along the diffuser passage have been determined. In addition, the flow angle and Mach number distributions at several key locations throughout the diffuser channel have been obtained. The most notable feature of the diffuser flowfield is the high degree of nonuniformity in the inlet/leading edge region.
Style APA, Harvard, Vancouver, ISO itp.
8

Prata, A. T., J. R. S. Fernandes, and F. Fagotti. "Dynamic Analysis of Piston Secondary Motion for Small Reciprocating Compressors." Journal of Tribology 122, no. 4 (2000): 752–60. http://dx.doi.org/10.1115/1.1314603.

Pełny tekst źródła
Streszczenie:
Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the gas leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance. In the present contribution a numerical simulation is performed for a ringless piston inside the cylinder of a reciprocating compressor, including both the axial and the radial piston motion. The compressor considered here is a small hermetic compressor employed in domestic refrigerators, with the radial clearance between piston and cylinder filled with lubricant oil. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between oil leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. All corresponding forces and moments are included in the problem formulation of the piston dynamics in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. [S0742-4787(11)00301-8]
Style APA, Harvard, Vancouver, ISO itp.
9

Rodgers, C. "Impingement Starting and Power Boosting of Small Gas Turbines." Journal of Engineering for Gas Turbines and Power 107, no. 4 (1985): 821–27. http://dx.doi.org/10.1115/1.3239817.

Pełny tekst źródła
Streszczenie:
The technology of high-pressure air or hot-gas impingement from stationary shroud supplementary nozzles onto radial outflow compressors and radial inflow turbines to permit rapid gas turbine starting or power boosting is discussed. Data are presented on the equivalent turbine component performance for convergent/divergent shroud impingement nozzles, which reveal the sensitivity of nozzle velocity coefficient with Mach number and turbine efficiency with impingement nozzle admission arc. Compressor and turbine matching is addressed in the transient turbine start mode with the possibility of operating these components in braking or reverse flow regimes when impingement flow rates exceed design.
Style APA, Harvard, Vancouver, ISO itp.
10

Han, Fenghui, Zhe Wang, Yijun Mao, Jiajian Tan, and Wenhua Li. "Flow Control of Radial Inlet Chamber and Downstream Effects on a Centrifugal Compressor Stage." Applied Sciences 11, no. 5 (2021): 2168. http://dx.doi.org/10.3390/app11052168.

Pełny tekst źródła
Streszczenie:
Radial inlet chambers are widely used in various multistage centrifugal compressors, although they induce extra flow loss and inlet distortions. In this paper, the detailed flow characteristics inside the radial inlet chamber of an industrial centrifugal compressor have been numerically investigated for flow control and performance improvement. First, the numerical results are validated against the experimental data, and flow conditions inside the inlet chambers with different structures are compared. They indicate that, in the non-guide vane scheme, sudden expansions, tangential flows and flow separations in the spiral and annular convergent channels are the major causes of flow loss and distortions, while using guide vanes could introduce additional flow impacts, separations and wakes. Based on the flow analysis, structure improvements have been carried out on the radial inlet chamber, and an average increase of 4.97% has been achieved in the inlet chamber efficiencies over different operating conditions. However, the results further reveal that the increases in the performance and overall flow uniformity just in the radial inlet chamber do not necessarily mean a performance improvement in the downstream components, and the distribution of the positive tangential velocity at the impeller inlet might be a more essential factor for the efficiency of the whole compressor.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!