Gotowa bibliografia na temat „Radial Basis Function Neural Network Classifier”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Radial Basis Function Neural Network Classifier”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Radial Basis Function Neural Network Classifier"
Mohammadi, Mahnaz, Akhil Krishna, Nalesh S. i S. K. Nandy. "A Hardware Architecture for Radial Basis Function Neural Network Classifier". IEEE Transactions on Parallel and Distributed Systems 29, nr 3 (1.03.2018): 481–95. http://dx.doi.org/10.1109/tpds.2017.2768366.
Pełny tekst źródłaLee, Yuchun. "Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks". Neural Computation 3, nr 3 (wrzesień 1991): 440–49. http://dx.doi.org/10.1162/neco.1991.3.3.440.
Pełny tekst źródłaRana, Anurag, Arjun Kumar i Ankur Sharma. "Neural Network Radial Basis Function classifier for earthquake data using aFOA". International Journal of Advanced Research 4, nr 8 (31.08.2016): 537–40. http://dx.doi.org/10.21474/ijar01/1244.
Pełny tekst źródłaRADHIKA, K. R., S. V. SHEELA i G. N. SEKHAR. "OFF-LINE SIGNATURE AUTHENTICATION USING RADIAL BASIS FUNCTION". International Journal of Pattern Recognition and Artificial Intelligence 25, nr 02 (marzec 2011): 207–25. http://dx.doi.org/10.1142/s0218001411008580.
Pełny tekst źródłaManson, Graeme, Gareth Pierce, Keith Worden i Daley Chetwynd. "Classification Using Radial Basis Function Networks with Uncertain Weights". Key Engineering Materials 293-294 (wrzesień 2005): 135–42. http://dx.doi.org/10.4028/www.scientific.net/kem.293-294.135.
Pełny tekst źródłaAmini, Mohammad, Jalal Rezaeenour i Esmaeil Hadavandi. "A Neural Network Ensemble Classifier for Effective Intrusion Detection Using Fuzzy Clustering and Radial Basis Function Networks". International Journal on Artificial Intelligence Tools 25, nr 02 (kwiecień 2016): 1550033. http://dx.doi.org/10.1142/s0218213015500335.
Pełny tekst źródłaHwang, Young-Sup, i Sung-Yang Bang. "An Efficient Method to Construct a Radial Basis Function Neural Network Classifier". Neural Networks 10, nr 8 (listopad 1997): 1495–503. http://dx.doi.org/10.1016/s0893-6080(97)00002-6.
Pełny tekst źródłaKumudha, P., i R. Venkatesan. "Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction". Scientific World Journal 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/2401496.
Pełny tekst źródłaJIAO Hongqiang, JIA Limin i JIN Yanhua. "A New Network Intrusion Detection Algorithm based on Radial Basis Function Neural Networks Classifier". INTERNATIONAL JOURNAL ON Advances in Information Sciences and Service Sciences 4, nr 1 (31.01.2012): 170–76. http://dx.doi.org/10.4156/aiss.vol4.issue1.22.
Pełny tekst źródłaSelvakumari Jeya, I. Jasmine, i S. N. Deepa. "Lung Cancer Classification Employing Proposed Real Coded Genetic Algorithm Based Radial Basis Function Neural Network Classifier". Computational and Mathematical Methods in Medicine 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7493535.
Pełny tekst źródłaRozprawy doktorskie na temat "Radial Basis Function Neural Network Classifier"
Kamat, Sai Shyamsunder. "Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259187.
Pełny tekst źródłaI det 21: a århundradet är information den nya valutan. Med allnärvaro av enheter anslutna till internet har mänskligheten tillgång till information inom ett ögonblick. Det finns dock vissa grupper som använder metoder för att stjäla information för personlig vinst via internet. Ett intrångsdetekteringssystem (IDS) övervakar ett nätverk för misstänkta aktiviteter och varnar dess ägare om ett oönskat intrång skett. Kommersiella IDS reagerar efter detekteringen av ett intrångsförsök. Angreppen blir alltmer komplexa och det kan vara dyrt att vänta på att attackerna ska ske för att reagera senare. Det är avgörande för nätverksägare att använda IDS:er som på ett förebyggande sätt kan skilja på oskadlig dataanvändning från skadlig. Maskininlärning kan lösa detta problem. Den kan analysera all befintliga data om internettrafik, känna igen mönster och förutse användarnas beteende. Detta projekt syftar till att studera hur effektivt Radial Basis Function Neural Networks (RBFN) med Djupinlärnings arkitektur kan påverka intrångsdetektering. Från detta perspektiv ställs frågan hur väl en RBFN kan förutsäga skadliga intrångsförsök, särskilt i jämförelse med befintliga detektionsmetoder.Här är RBFN definierad som en flera-lagers neuralt nätverksmodell som använder en radiell grundfunktion för att omvandla data till linjärt separerbar. Efter en undersökning av modern litteratur och lokalisering av ett namngivet dataset användes kvantitativ forskningsmetodik med prestanda indikatorer för att utvärdera RBFN: s prestanda. En Random Forest Classifier algorithm användes också för jämförelse. Resultaten erhölls efter en serie finjusteringar av parametrar på modellerna. Resultaten visar att RBFN är korrekt när den förutsäger avvikande internetbeteende i genomsnitt 80% av tiden. Andra algoritmer i litteraturen beskrivs som mer än 90% korrekta. Den föreslagna RBFN-modellen är emellertid mycket exakt när man registrerar specifika typer av attacker som Port Scans och BotNet malware. Resultatet av projektet visar att den föreslagna metoden är allvarligt påverkad av begränsningar. T.ex. så behöver modellen finjusteras över flera försök för att uppnå önskad noggrannhet. En möjlig lösning är att begränsa denna modell till att endast förutsäga malware-attacker och använda andra maskininlärnings-algoritmer för andra attacker.
Koudelka, Vlastimil. "Neuronové sítě pro modelování EMC malých letadel". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217813.
Pełny tekst źródłaMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems". Digital WPI, 2003. https://digitalcommons.wpi.edu/etd-theses/77.
Pełny tekst źródłaMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems". Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0113103-121206/.
Pełny tekst źródłaKeywords: optimization technique; microwave systems; optimization technique; neural networks; QuickWave 3D. Includes bibliographical references (p. 68-71).
Aguilar, David P. "A radial basis neural network for the analysis of transportation data". [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000515.
Pełny tekst źródłaFathala, Giuma Musbah. "Analysis and implementation of radial basis function neural network for controlling non-linear dynamical systems". Thesis, University of Newcastle upon Tyne, 1998. http://hdl.handle.net/10443/3114.
Pełny tekst źródłaLee, Hee Eun. "Hierarchical modeling of multi-scale dynamical systems using adaptive radial basis function neural networks: application to synthetic jet actuator wing". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/230.
Pełny tekst źródłaKattekola, Sravanthi. "Weather Radar image Based Forecasting using Joint Series Prediction". ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1238.
Pełny tekst źródłaMatta, Mariel Cadena da. "Processamento de imagens em dosimetria citogenética". Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/10141.
Pełny tekst źródłaMade available in DSpace on 2015-03-03T14:16:54Z (GMT). No. of bitstreams: 2 Dissertação Mariel Cadena da Matta.pdf: 2355898 bytes, checksum: 9c0530af680cf965137a2385d949b799 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013
FACEPE
A Dosimetria citogenética empregando análise de cromossomos dicêntricos é o “padrão ouro” para estimativas da dose absorvida após exposições acidentais às radiações ionizantes. Todavia, este método é laborioso e dispendioso, o que torna necessária a introdução de ferramentas computacionais que dinamizem a contagem dessas aberrações cromossômicas radioinduzidas. Os atuais softwares comerciais, utilizados no processamento de imagens em Biodosimetria, são em sua maioria onerosos e desenvolvidos em sistemas dedicados, não podendo ser adaptados para microscópios de rotina laboratorial. Neste contexto, o objetivo da pesquisa foi o desenvolvimento do software ChromoSomeClassification para processamento de imagens de metáfases de linfócitos (não irradiados e irradiados) coradas com Giemsa a 5%. A principal etapa da análise citogenética automática é a separação correta dos cromossomos do fundo, pois a execução incorreta desta fase compromete o desenvolvimento da classificação automática. Desta maneira, apresentamos uma proposta para a sua resolução baseada no aprimoramento da imagem através das técnicas de mudança do sistema de cores, subtração do background e aumento do contraste pela modificação do histograma. Assim, a segmentação por limiar global simples, seguida por operadores morfológicos e pela técnica de separação de objetos obteve uma taxa de acerto de 88,57%. Deste modo, os cromossomos foram enfileirados e contabilizados, e assim, a etapa mais laboriosa da Dosimetria citogenética foi realizada. As características extraídas dos cromossomos isolados foram armazenadas num banco de dados para que a classificação automática fosse realizada através da Rede Neural com Funções de Ativação de Base Radial (RBF). O software proposto alcançou uma taxa de sensibilidade de 76% e especificidade de 91% que podem ser aprimoradas através do acréscimo do número de objetos ao banco de dados e da extração de mais características dos cromossomos.
Ringienė, Laura. "Hybrid neural network for multidimensional data visualization". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140912_140117-42267.
Pełny tekst źródłaŠio darbo tyrimų sritis yra duomenų tyryba remiantis daugiamačių duomenų vizualia analize. Tai leidžia tyrėjui betarpiškai dalyvauti duomenų analizės procese, geriau pažinti sudėtingus duomenis ir priimti geriausius sprendimus. Disertacijos tikslas yra sukurti metodą tokios duomenų projekcijos radimui plokštumoje, kad tyrėjas galėtų pamatyti ir įvertinti daugiamačių taškų tarpgrupinius panašumus/skirtingumus. Šiam tikslui pasiekti yra pasiūlytas radialinių bazinių funkcijų ir daugiasluoksnio perceptrono, turinčio ,,butelio kaklelio“ neuroninio tinklo savybes, junginys. Naujas tinklas naudojamas vizualiai daugiamačių duomenų analizei, kai atidėjimui plokštumoje arba trimatėje erdvėje taškai gaunami paskutinio paslėpto neuronų sluoksnio išėjimuose, kai į tinklo įėjimą paduodami daugiamačiai duomenys. Šio tinklo ypatybė yra ta, kad gautas vaizdas plokštumoje labiau atspindi bendrą duomenų struktūrą (klasteriai, klasterių tarpusavio artumas, taškų tarpklasterinis panašumas) nei daugiamačių taškų tarpusavio išsidėstymą.
Książki na temat "Radial Basis Function Neural Network Classifier"
Liu, Jinkun. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34816-7.
Pełny tekst źródłaLiu, Jinkun. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaA Radial Basis Function Neural Network Approach to Two-Color Infrared Missile Detection. Storming Media, 2001.
Znajdź pełny tekst źródłaLiu, Jinkun. Radial Basis Function Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation. Springer Berlin / Heidelberg, 2015.
Znajdź pełny tekst źródłaRadial Basis Function Rbf Neural Network Control For Mechanical Systems Design Analysis And Matlab Simulation. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Radial Basis Function Neural Network Classifier"
Shetty, Balaji S., Manisha S. Mahindrakar i U. V. Kulkarni. "Unbounded Fuzzy Radial Basis Function Neural Network Classifier". W Advances in Intelligent Systems and Computing, 25–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2008-9_3.
Pełny tekst źródłaAhn, Tae Chon, Seok Beom Roh, Zi Long Yin i Yong Soo Kim. "Design of Radial Basis Function Classifier Based on Polynomial Neural Networks". W Soft Computing in Artificial Intelligence, 107–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05515-2_10.
Pełny tekst źródłaGentric, Philippe, i Heini C. A. M. Withagen. "Constructive methods for a new classifier based on a radial-basis-function neural network accelerated by a tree". W New Trends in Neural Computation, 125–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56798-4_135.
Pełny tekst źródłaKim, Wook-Dong, Sung-Kwun Oh i Hyun-Ki Kim. "Fuzzy Clustering-Based Polynomial Radial Basis Function Neural Networks (p-RBF NNs) Classifier Designed with Particle Swarm Optimization". W Advances in Neural Networks – ISNN 2011, 464–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21105-8_54.
Pełny tekst źródłaKim, Wook-Dong, Sung-Kwun Oh i Jeong-Tae Kim. "Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Fuzzy Clustering and Data Preprocessing Method". W Advances in Neural Networks – ISNN 2012, 38–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31362-2_5.
Pełny tekst źródłaCrowther, Patricia, Robert Cox i Dharmendra Sharma. "A Study of the Radial Basis Function Neural Network Classifiers Using Known Data of Varying Accuracy and Complexity". W Lecture Notes in Computer Science, 210–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30134-9_30.
Pełny tekst źródłaYang, Zheng Rong. "Bayesian Radial Basis Function Neural Network". W Lecture Notes in Computer Science, 211–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11508069_28.
Pełny tekst źródłaShetty, Balaji S., Manisha S. Mahindrakar i U. V. Kulkarni. "Advance Fuzzy Radial Basis Function Neural Network". W Advances in Intelligent Systems and Computing, 11–24. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2008-9_2.
Pełny tekst źródłaGan, C., i K. Danai. "Model-Based Recurrent Neural Network for Fault Diagnosis of Nonlinear Dynamic Systems". W Radial Basis Function Networks 2, 319–52. Heidelberg: Physica-Verlag HD, 2001. http://dx.doi.org/10.1007/978-3-7908-1826-0_10.
Pełny tekst źródłaPark, Ho-Sung, Sung-Kwun Oh i Hyun-Ki Kim. "Genetic-Based Granular Radial Basis Function Neural Network". W Advances in Neural Networks - ISNN 2010, 177–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13278-0_23.
Pełny tekst źródłaStreszczenia konferencji na temat "Radial Basis Function Neural Network Classifier"
Lall, Snehalika, Anuradha Saha, Amit Konar, Mousumi Laha, Anca L. Ralescu, Kalyan kumar Mallik i Atulya K. Nagar. "EEG-based mind driven type writer by fuzzy radial basis function neural classifier". W 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727317.
Pełny tekst źródłaChen, Sheng, Xia Hong i Chris J. Harris. "Radial basis function classifier construction using particle swarm optimisation aided orthogonal forward regression". W 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596855.
Pełny tekst źródłaChen, S., C. J. Harris i L. Hanzo. "Complex-valued symmetric radial basis function classifier for quadrature phase shift keying beamforming systems". W 2008 IEEE International Joint Conference on Neural Networks (IJCNN 2008 - Hong Kong). IEEE, 2008. http://dx.doi.org/10.1109/ijcnn.2008.4633760.
Pełny tekst źródłaGao, Ming, Xia Hong, Sheng Chen i Chris J. Harris. "On combination of SMOTE and particle swarm optimization based radial basis function classifier for imbalanced problems". W 2011 International Joint Conference on Neural Networks (IJCNN 2011 - San Jose). IEEE, 2011. http://dx.doi.org/10.1109/ijcnn.2011.6033353.
Pełny tekst źródłaYoung-Sup Hwang i Sung-Yang Bang. "An efficient method to construct a radial basis function neural network classifier and its application to unconstrained handwritten digit recognition". W Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.547643.
Pełny tekst źródłaGhassemi, Payam, Kaige Zhu i Souma Chowdhury. "Optimal Surrogate and Neural Network Modeling for Day-Ahead Forecasting of the Hourly Energy Consumption of University Buildings". W ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68350.
Pełny tekst źródłaFisch, Dominik, i Bernhard Sick. "Training of radial basis function classifiers with resilient propagation and variational Bayesian inference". W 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178699.
Pełny tekst źródłaBotsch, Michael, i Josef A. Nossek. "Construction of interpretable Radial Basis Function classifiers based on the Random Forest kernel". W 2008 IEEE International Joint Conference on Neural Networks (IJCNN 2008 - Hong Kong). IEEE, 2008. http://dx.doi.org/10.1109/ijcnn.2008.4633793.
Pełny tekst źródłaJianchuan Yin, Jiangqiang Hu i Renxiang Bu. "A novel reformulated radial basis function neural network". W 2009 Chinese Control and Decision Conference (CCDC). IEEE, 2009. http://dx.doi.org/10.1109/ccdc.2009.5192355.
Pełny tekst źródłaVenkateswarlu, R. L. K., R. Vasantha Kumari i G. Vani Jayasri. "Speech recognition using Radial Basis Function neural network". W 2011 3rd International Conference on Electronics Computer Technology (ICECT). IEEE, 2011. http://dx.doi.org/10.1109/icectech.2011.5941788.
Pełny tekst źródła