Artykuły w czasopismach na temat „Radar absorbing structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Radar absorbing structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chambers, B. "Symmetrical radar absorbing structures." Electronics Letters 31, no. 5 (1995): 404–5. http://dx.doi.org/10.1049/el:19950280.
Pełny tekst źródłaAytaç, Ayhan, Hüseyin İpek, Kadir Aztekin, and Burak Çanakçı. "A review of the radar absorber material and structures." Scientific Journal of the Military University of Land Forces 198, no. 4 (2020): 931–46. http://dx.doi.org/10.5604/01.3001.0014.6064.
Pełny tekst źródłaKim, Jin-Bong. "Broadband radar absorbing structures of carbon nanocomposites." Advanced Composite Materials 21, no. 4 (2012): 333–44. http://dx.doi.org/10.1080/09243046.2012.736350.
Pełny tekst źródłaZhang, Zheng Quan, Li Ge Wang, and En Ze Wang. "Microwave Absorbing Properties of Radar Absorbing Structure Composites Filling with Carbon Nanotubes." Advanced Materials Research 328-330 (September 2011): 1109–12. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1109.
Pełny tekst źródłaEun, Se-Won, Won-Ho Choi, Hong-Kyu Jang, Jae-Hwan Shin, Jin-Bong Kim, and Chun-Gon Kim. "Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures." Composites Science and Technology 116 (September 2015): 18–25. http://dx.doi.org/10.1016/j.compscitech.2015.04.001.
Pełny tekst źródłaRahmanzadeh, Mahdi, Hamid Rajabalipanah, and Ali Abdolali. "Analytical Investigation of Ultrabroadband Plasma–Graphene Radar Absorbing Structures." IEEE Transactions on Plasma Science 45, no. 6 (2017): 945–54. http://dx.doi.org/10.1109/tps.2017.2700724.
Pełny tekst źródłaWang, F. W., S. X. Gong, S. Zhang, X. Mu, and T. Hong. "RCS Reduction of Array Antennas with Radar Absorbing Structures." Journal of Electromagnetic Waves and Applications 25, no. 17-18 (2011): 2487–96. http://dx.doi.org/10.1163/156939311798806239.
Pełny tekst źródłaShen, Lihao, Yongqiang Pang, Leilei Yan, Yang Shen, Zhuo Xu, and Shaobo Qu. "Broadband radar absorbing sandwich structures with enhanced mechanical properties." Results in Physics 11 (December 2018): 253–58. http://dx.doi.org/10.1016/j.rinp.2018.09.012.
Pełny tekst źródłaChoi, Ilbeom, Dongyoung Lee, and Dai Gil Lee. "Radar absorbing composite structures dispersed with nano-conductive particles." Composite Structures 122 (April 2015): 23–30. http://dx.doi.org/10.1016/j.compstruct.2014.11.040.
Pełny tekst źródłaNam, Young-Woo, Jae-Hwan Shin, Jae-Hun Choi, et al. "Micro-mechanical failure prediction of radar-absorbing structure dispersed with multi-walled carbon nanotubes considering multi-scale modeling." Journal of Composite Materials 52, no. 12 (2017): 1649–60. http://dx.doi.org/10.1177/0021998317729003.
Pełny tekst źródłaJang, Jae-Kyeong, Jong-Min Hyun, Dae-Sung Son, and Jung-Ryul Lee. "Nondestructive and electromagnetic evaluations of stealth structures damaged by lightning strike." Journal of Intelligent Material Systems and Structures 30, no. 17 (2019): 2567–74. http://dx.doi.org/10.1177/1045389x19862366.
Pełny tekst źródłaChen, Xin Yi, Jian Bo Wang, Jun Lu, Guan Cheng Sun, and Gui Bo Chen. "A Comparative Study on the Effects of FSS with Different Elements on the Characteristics of Radar Absorbing Materials." Advanced Materials Research 418-420 (December 2011): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.42.
Pełny tekst źródłaJang, Byung-Wook, Sun-Hwa Park, Won-Jun Lee, Young-Sik Joo, and Jung-Sun Park. "Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge." Journal of the Korean Society for Aeronautical & Space Sciences 41, no. 4 (2013): 268–74. http://dx.doi.org/10.5139/jksas.2013.41.4.268.
Pełny tekst źródłaKim, Sang-Young, and Sung-Soo Kim. "Design of Radar Absorbing Structures Utilizing Carbon-Based Polymer Composites." Polymers and Polymer Composites 26, no. 1 (2018): 105–10. http://dx.doi.org/10.1177/096739111802600113.
Pełny tekst źródłaNarayan, Shiv, J. Sreeja, V. V. Surya, B. Sangeetha, and Raveendranath U. Nair. "Radar Absorbing Structures Using Frequency Selective Surfaces: Trends and Perspectives." Journal of Electronic Materials 49, no. 3 (2020): 1728–41. http://dx.doi.org/10.1007/s11664-019-07911-2.
Pełny tekst źródłaHunjra, MAM, MA Fakhar, K. Naveed, and T. Subhani. "Polyurethane foam-based radar absorbing sandwich structures to evade detection." Journal of Sandwich Structures & Materials 19, no. 6 (2016): 647–58. http://dx.doi.org/10.1177/1099636216635856.
Pełny tekst źródłade Castro Folgueras, Luiza, Mauro Angelo Alves, and Mirabel C. Rezende. "Electromagnetic Evaluation of Multifunctional Composites for Use in Radar Absorbing Structures." Advanced Materials Research 1135 (January 2016): 104–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1135.104.
Pełny tekst źródłaJang, Byungwook, Myungjun Kim, Jungsun Park, and Sooyong Lee. "Design Optimization of Composite Radar Absorbing Structures to Improve Stealth Performance." International Journal of Aeronautical and Space Sciences 17, no. 1 (2016): 20–28. http://dx.doi.org/10.5139/ijass.2016.17.1.20.
Pełny tekst źródłaWang, Hongyu, and Dongmei Zhu. "Double layered radar absorbing structures of Silicon Carbide fibers/polyimide composites." Synthetic Metals 246 (December 2018): 213–19. http://dx.doi.org/10.1016/j.synthmet.2018.10.020.
Pełny tekst źródłaGo, Jeong-In, Won-Jun Lee, Sang-Yong Kim, Sang-Min Baek, and Won-Ho Choi. "Electromagnetic damage tolerance for radar absorbing composite structures with impact damage." Composites Science and Technology 199 (October 2020): 108366. http://dx.doi.org/10.1016/j.compscitech.2020.108366.
Pełny tekst źródłaZhao, Ziyu, Pibo Ma, Haitao Lin, and Fenglin Xia. "Radar-absorbing Performances of Camouflage Fabrics with 3D Warp-knitted Structures." Fibers and Polymers 21, no. 3 (2020): 532–37. http://dx.doi.org/10.1007/s12221-020-9775-1.
Pełny tekst źródłaLee, Won-Jun, and Chun-Gon Kim. "Electromagnetic Wave Absorbing Composites with a Square Patterned Conducting Polymer Layer for Wideband Characteristics." Shock and Vibration 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/318380.
Pełny tekst źródłaChoi, Won-Ho, Woon-Hyung Song, and Won-Jun Lee. "Broadband Radar Absorbing Structures with a Practical Approach from Design to Fabrication." Journal of Electromagnetic Engineering and Science 20, no. 4 (2020): 254–61. http://dx.doi.org/10.26866/jees.2020.20.4.254.
Pełny tekst źródłaKim, Sang-Yong, Won-Jun Lee, Sang-Min Baek, and Chun-Gon Kim. "Control of dielectric properties of micropattern printed fabric for radar absorbing structures." Composite Structures 274 (October 2021): 114361. http://dx.doi.org/10.1016/j.compstruct.2021.114361.
Pełny tekst źródłaWang, Zhijin, Chen Zhou, Valentin Khaliulin, and Alexey Shabalov. "An experimental study on the radar absorbing characteristics of folded core structures." Composite Structures 194 (June 2018): 199–207. http://dx.doi.org/10.1016/j.compstruct.2018.03.106.
Pełny tekst źródłaSiva Nagasree, P., K. Ramji, Ch Subramanyam, K. Krushnamurthy, and T. Haritha. "Synthesis of Ni0.5Zn0.5Fe2O4-reinforced E-glass/epoxy nanocomposites for radar-absorbing structures." Plastics, Rubber and Composites 49, no. 10 (2020): 434–42. http://dx.doi.org/10.1080/14658011.2020.1793080.
Pełny tekst źródłaLee, Dongyoung, Ilbeom Choi, and Dai Gil Lee. "Development of a damage tolerant structure for nano-composite radar absorbing structures." Composite Structures 119 (January 2015): 107–14. http://dx.doi.org/10.1016/j.compstruct.2014.08.001.
Pełny tekst źródłaWang, Yi, Hai Feng Cheng, Jun Wang, and Yong Jiang Zhou. "Infrared Emissivity of Capacitive Frequency-Selective Surfaces and its Application in Radar and IR Compatible Stealth Sandwich Structures." Advanced Materials Research 382 (November 2011): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.382.65.
Pełny tekst źródłaPark, Ki-Yeon, Jae-Hung Han, Jin-Bong Kim, and Sang-Kwan Lee. "Two-layered electromagnetic wave-absorbing E-glass/epoxy plain weave composites containing carbon nanofibers and NiFe particles." Journal of Composite Materials 45, no. 26 (2011): 2773–81. http://dx.doi.org/10.1177/0021998311410467.
Pełny tekst źródłaSun, Wei-Feng, and Peng-Bo Sun. "Electrical Insulation and Radar-Wave Absorption Performances of Nanoferrite/Liquid-Silicone-Rubber Composites." International Journal of Molecular Sciences 23, no. 18 (2022): 10424. http://dx.doi.org/10.3390/ijms231810424.
Pełny tekst źródłaJang, Byung-Wook, and Jung-Sun Park. "Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching." Journal of the Korean Society for Aeronautical & Space Sciences 43, no. 2 (2015): 118–24. http://dx.doi.org/10.5139/jksas.2015.43.2.118.
Pełny tekst źródłaJoy, Vineetha, Vishal Padwal, Raveendranath U. Nair, and Hema Singh. "Optimal Design of Multilayered Radar Absorbing Structures (RAS) using Swarm Intelligence based Algorithm." Defence Science Journal 72, no. 2 (2022): 236–42. http://dx.doi.org/10.14429/dsj.72.17417.
Pełny tekst źródłaIndrusiak, Tamara, Iaci M. Pereira, Ketly Pontes, et al. "Hybrid carbonaceous materials for radar absorbing poly(vinylidene fluoride) composites with multilayered structures." SPE Polymers 2, no. 1 (2021): 62–73. http://dx.doi.org/10.1002/pls2.10030.
Pełny tekst źródłaLiu, Hsien-Kuang, Ruey-Bin Yang, and Ke-Dun Yen. "Radar-Absorbing Structures with Reduced Graphene Oxide Papers Fabricated Under Various Processing Parameters." Journal of Electronic Materials 51, no. 3 (2022): 985–94. http://dx.doi.org/10.1007/s11664-021-09347-z.
Pełny tekst źródłaXu, Haibing, Shaowei Bie, Yongshun Xu, Wei Yuan, Qian Chen, and Jianjun Jiang. "Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces." Composites Part A: Applied Science and Manufacturing 80 (January 2016): 111–17. http://dx.doi.org/10.1016/j.compositesa.2015.10.019.
Pełny tekst źródłaKapelewski, J. "On Current and Prospective Use of Binary Thin Multilayers in Radar Absorbing Structures." Acta Physica Polonica A 124, no. 3 (2013): 451–55. http://dx.doi.org/10.12693/aphyspola.124.451.
Pełny tekst źródłaDelfini, Andrea, Marta Albano, Antonio Vricella, et al. "Advanced Radar Absorbing Ceramic-Based Materials for Multifunctional Applications in Space Environment." Materials 11, no. 9 (2018): 1730. http://dx.doi.org/10.3390/ma11091730.
Pełny tekst źródłaIvaturi, Srikanth, P. S. N. S. R. Srikar, K. Anusha, et al. "Fabrication and Evaluation of Low Density Glass-Epoxy Composites for Microwave Absorption Applications." Defence Science Journal 67, no. 6 (2017): 682. http://dx.doi.org/10.14429/dsj.67.11331.
Pełny tekst źródłaZhang, Ying, Qing Shen, Yixing Huang, Qin Lu, and Jijun Yu. "Broadband Electromagnetic Absorption Effect of Topological Structure Using Carbon Nanotube Based Hybrid Material." Materials 15, no. 14 (2022): 4983. http://dx.doi.org/10.3390/ma15144983.
Pełny tekst źródłaCasper, David A., and K. ‐J Samuel Kung. "Simulation of ground‐penetrating radar waves in a 2-D soil model." GEOPHYSICS 61, no. 4 (1996): 1034–49. http://dx.doi.org/10.1190/1.1444025.
Pełny tekst źródłaDin, Salah ud, Jong-Min Hyun, Dae-Sung Son, and Jung-Ryul Lee. "Robotic scanning free-space measurement system for electromagnetic performance evaluation of curved radar absorbing structures." International Journal of Advanced Robotic Systems 19, no. 4 (2022): 172988062211145. http://dx.doi.org/10.1177/17298806221114554.
Pełny tekst źródłaKim, Chingu, and Minkook Kim. "Intrinsically conducting polymer (ICP) coated aramid fiber reinforced composites for broadband radar absorbing structures (RAS)." Composites Science and Technology 211 (July 2021): 108827. http://dx.doi.org/10.1016/j.compscitech.2021.108827.
Pełny tekst źródłaJang, Min-Su, Woo-Hyeok Jang, Do-Hyeon Jin, Won-Ho Choi, and Chun-Gon Kim. "Circuit-analog radar absorbing structures using a periodic pattern etched on Ni-coated glass fabric." Composite Structures 281 (February 2022): 115099. http://dx.doi.org/10.1016/j.compstruct.2021.115099.
Pełny tekst źródłaJang, Min-Su, Jae-Hun Choi, Woo-Hyeok Jang, Young-Woo Nam, and Chun-Gon Kim. "Influence of lightning strikes on the structural performance of Ni-glass/epoxy radar-absorbing structures." Composite Structures 245 (August 2020): 112301. http://dx.doi.org/10.1016/j.compstruct.2020.112301.
Pełny tekst źródłaLi, Weiwei, Mingji Chen, Zhihui Zeng, Hao Jin, Yongmao Pei, and Zhong Zhang. "Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization." Composites Science and Technology 145 (June 2017): 10–14. http://dx.doi.org/10.1016/j.compscitech.2017.03.009.
Pełny tekst źródłaMazinov A. S, Fitaev I. Sh, and Boldyrev N. A. "Attenuation of the normal component of the reflected electromagnetic wave by combined radio-absorbing coatings." Technical Physics Letters 48, no. 10 (2022): 24. http://dx.doi.org/10.21883/tpl.2022.10.54792.19324.
Pełny tekst źródłaKim, Kook-Hyun, Dae-Seung Cho, and Jin-Hyeong Kim. "Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures." Journal of the Society of Naval Architects of Korea 44, no. 4 (2007): 445–50. http://dx.doi.org/10.3744/snak.2007.44.4.445.
Pełny tekst źródłaBaek, Sang Min, and Won Jun Lee. "Design method for radar absorbing structures using reliability-based design optimization of the composite material properties." Composite Structures 262 (April 2021): 113559. http://dx.doi.org/10.1016/j.compstruct.2021.113559.
Pełny tekst źródłaJang, Hong-Kyu, Jae-Hwan Shin, Chun-Gon Kim, Sang-Hun Shin, and Jin-Bong Kim. "Semi-cylindrical Radar Absorbing Structures using Fiber-reinforced Composites and Conducting Polymers in the X-band." Advanced Composite Materials 20, no. 3 (2011): 215–29. http://dx.doi.org/10.1163/092430410x539299.
Pełny tekst źródłaOh, Jung-Hoon, Kyung-Sub Oh, Chun-Gon Kim, and Chang-Sun Hong. "Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges." Composites Part B: Engineering 35, no. 1 (2004): 49–56. http://dx.doi.org/10.1016/j.compositesb.2003.08.011.
Pełny tekst źródła