Gotowa bibliografia na temat „RAD51C/XRCC3”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „RAD51C/XRCC3”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "RAD51C/XRCC3"

1

Somyajit, Kumar, Shivakumar Basavaraju, Ralph Scully i Ganesh Nagaraju. "ATM- and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair". Molecular and Cellular Biology 33, nr 9 (25.02.2013): 1830–44. http://dx.doi.org/10.1128/mcb.01521-12.

Pełny tekst źródła
Streszczenie:
The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G 2 phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G 2 /M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.
Style APA, Harvard, Vancouver, ISO itp.
2

Yamada, Nazumi Alice, John M. Hinz, Vicki L. Kopf, Kathryn D. Segalle i Larry H. Thompson. "XRCC3 ATPase Activity Is Required for Normal XRCC3-Rad51C Complex Dynamics and Homologous Recombination". Journal of Biological Chemistry 279, nr 22 (22.03.2004): 23250–54. http://dx.doi.org/10.1074/jbc.m402247200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hatanaka, Atsushi, Mitsuyoshi Yamazoe, Julian E. Sale, Minoru Takata, Kazuhiko Yamamoto, Hiroyuki Kitao, Eiichiro Sonoda, Koji Kikuchi, Yasukazu Yonetani i Shunichi Takeda. "Similar Effects of Brca2 Truncation and Rad51 Paralog Deficiency on Immunoglobulin V Gene Diversification in DT40 Cells Support an Early Role for Rad51 Paralogs in Homologous Recombination". Molecular and Cellular Biology 25, nr 3 (1.02.2005): 1124–34. http://dx.doi.org/10.1128/mcb.25.3.1124-1134.2005.

Pełny tekst źródła
Streszczenie:
ABSTRACT BRCA2 is a tumor suppressor gene that is linked to hereditary breast and ovarian cancer. Although the Brca2 protein participates in homologous DNA recombination (HR), its precise role remains unclear. From chicken DT40 cells, we generated BRCA2 gene-deficient cells which harbor a truncation at the 3′ end of the BRC3 repeat (brca2tr). Comparison of the characteristics of brca2tr cells with those of other HR-deficient DT40 clones revealed marked similarities with rad51 paralog mutants (rad51b, rad51c, rad51d, xrcc2, or xrcc3 cells). The phenotypic similarities include a shift from HR-mediated diversification to single-nucleotide substitutions in the immunoglobulin variable gene segment and the partial reversion of this shift by overexpression of Rad51. Although recent evidence supports at least Xrcc3 and Rad51C playing a role late in HR, our data suggest that Brca2 and the Rad51 paralogs may also contribute to HR at the same early step, with their loss resulting in the stimulation of an alternative, error-prone repair pathway.
Style APA, Harvard, Vancouver, ISO itp.
4

Nagaraju, Ganesh, Andrea Hartlerode, Amy Kwok, Gurushankar Chandramouly i Ralph Scully. "XRCC2 and XRCC3 Regulate the Balance between Short- and Long-Tract Gene Conversions between Sister Chromatids". Molecular and Cellular Biology 29, nr 15 (26.05.2009): 4283–94. http://dx.doi.org/10.1128/mcb.01406-08.

Pełny tekst źródła
Streszczenie:
ABSTRACT Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.
Style APA, Harvard, Vancouver, ISO itp.
5

Kurumizaka, H., S. Ikawa, M. Nakada, K. Eda, W. Kagawa, M. Takata, S. Takeda, S. Yokoyama i T. Shibata. "Homologous-pairing activity of the human DNA-repair proteins Xrcc3*Rad51C". Proceedings of the National Academy of Sciences 98, nr 10 (1.05.2001): 5538–43. http://dx.doi.org/10.1073/pnas.091603098.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wiese, C. "Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells". Nucleic Acids Research 30, nr 4 (15.02.2002): 1001–8. http://dx.doi.org/10.1093/nar/30.4.1001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Liu, Yilun, Madalena Tarsounas, Paul O'Regan i Stephen C. West. "Role of RAD51C and XRCC3 in Genetic Recombination and DNA Repair". Journal of Biological Chemistry 282, nr 3 (17.11.2006): 1973–79. http://dx.doi.org/10.1074/jbc.m609066200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Masson, J. Y., A. Z. Stasiak, A. Stasiak, F. E. Benson i S. C. West. "Complex formation by the human RAD51C and XRCC3 recombination repair proteins". Proceedings of the National Academy of Sciences 98, nr 15 (17.07.2001): 8440–46. http://dx.doi.org/10.1073/pnas.111005698.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lio, Yi-Ching, David Schild, Mark A. Brenneman, J. Leslie Redpath i David J. Chen. "Human Rad51C Deficiency Destabilizes XRCC3, Impairs Recombination, and Radiosensitizes S/G2-phase Cells". Journal of Biological Chemistry 279, nr 40 (październik 2004): 42313–20. http://dx.doi.org/10.1074/jbc.m405212200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kurumizaka, H. "Region and amino acid residues required for Rad51C binding in the human Xrcc3 protein". Nucleic Acids Research 31, nr 14 (15.07.2003): 4041–50. http://dx.doi.org/10.1093/nar/gkg442.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "RAD51C/XRCC3"

1

Lu, Daniel Kee. "The Rad51 family of proteins: Interactions, vitamin D, and implications in head and neck cancer". Scholarly Commons, 2013. https://scholarlycommons.pacific.edu/uop_etds/191.

Pełny tekst źródła
Streszczenie:
Protection of the genome from carcinogenic consequences of DNA double-strand breaks (DSBs) is accomplished through the pathways of non-homologous end-joining (NHEJ) or homologous recombinational repair. Five human proteins with homology to Rad51 known as the Rad51 paralogs, Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3, whose loss of function in cell lines leads to high chromosomal instability. Previous studies have shown Rad51C participate in two paralog protein complexes, one containing Rad51B, Rad51C, Rad51D and XRCC2 (BCDX2) and the other containing only Rad51C and XRCC3 (CX3). However, the only structural data available is the crystal structure of RecA, the bacterial homolog, the determination of the N-terminus of human Rad51 by NMR, and the crystal structure of Pyroccocus furious Rad51. Currently the Alvinlla pompejana Rad51C has been cloned, expressed and is currently being crystallized in the Tainer laboratory (UC Berkeley) since the human Rad51C protein has proven too difficult to be utilized. To test functional association of Hs Rad51B and Hs XRCC3 to Ap Rad51C. The human proteins were heterologously expressed in Pichia pastoris and the other expressed in E. coli. The proteins were extracted and interaction was tested through co-immunoprecipitation. Initial results depict weak binding or an unstable interaction between Hs Rad51B and Ap Rad51C. Hs XRCC3 and Ap Rad51C interaction remains unclear and requires further testing. Additionally, we have utilized a cellular model of HNSCC to identify whether the down-regulation of Rad51 after application of VD 3 is concomitant with the down-regulation of NBS1. NBS1 is a DNA repair protein involved in both pathways of DNA double-strand break repair, non-homologous end-joining and homologous recombinational repair. It has recently been demonstrated that NBS1 binds to Rad51 aiding in its localization to sites of DNA damage. VD 3 is a potential chemopreventive agent in the treatment of head and neck cancer. For the in vitro model Rad51 and NBS1 protein were both extracted from SCC25 and MCF-7 cancer cell lines were treated with 100 nM of VD 3 . For the in vivo model hamsters cheek pouch tissue sections with VD 3 treated and DMBA over the course of 14 weeks were used. Rad51 and NBS1 staining is restricted to the nuclei of the basal cell layer of the epithelium in VD 3 treated animals as compared to untreated controls where staining is evident throughout the dysplastic epithelium and is not restricted to nuclei. Unlike the western blot data of Rad51 that shows similar downregulation as the immunocytochemistry, the western blot analysis of NBS1 is unclear. However, the immunocytochemistry suggests that NBS1 is also downregulated by VD 3 in vivo, and therefore, it may be implied that both the HRR and NHEJ pathways are involved in the cellular effects of VD 3 in HNSCC.
Style APA, Harvard, Vancouver, ISO itp.
2

Mishra, Anup. "Targeting RAD51C Pathological Mutants by Synthetic Lethality and Extended Functions of RAD51C/XRCC3 in Mitochondrial Genome Maintenance". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4155.

Pełny tekst źródła
Streszczenie:
To counteract the potentially calamitous effects of genomic instability in the form of double-strand breaks (DSBs), cells have evolved with two major mechanisms. First, DNA non¬homologous end joining (NHEJ) which requires no significant homology, and second, homologous recombination (HR) that uses intact sequences on the sister chromatid or homologous chromosome as a template to repair the broken DNA. Although NHEJ repairs DSBs in all stages of cell cycle; it is generally error-prone due to insertions or deletions of few nucleotides at the breakpoint. In contrast, DSBs that are generated during S and G2 phase of the cell are preferentially repaired by HR that utilizes neighboring sister chromatid as a template. A central role in the HR reaction is promoted by the RAD51 recombinase which polymerizes onto single-stranded DNA (ssDNA), catalyzes pairing and strand invasion with homologous DNA molecule. Assembly of RAD51 monomers onto ssDNA is a relatively slow process and is facilitated by several mediator proteins. The tumor suppressor protein BRCA2 is the best-characterized RAD51 mediator in DSB repair by HR. Many reports in the past two decades have established that RAD51 recruitment at break sites also depends on the RAD51 paralogs. Mammalian cells encode five RAD51 paralogs; RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 which share 20–30% identity at amino acid level with RAD51 and with each other. In addition to their role in HR, RAD51 paralogs have been identified to be involved in DNA damage signaling and replication fork maintenance. In addition, mouse knockout of RAD51 paralogs causes early embryonic lethality. Recent studies show that germline mutations in all five RAD51 paralogs cause various types of cancer including breast and ovarian cancers. Pedigree analyses revealed that similar to BRCA1 and BRCA2, pathological missense mutants of RAD51C were of high penetrance. Historically, defects in the DNA repair pathways have been exploited for cancer chemo-and radiotherapy. In an attempt to develop better cancer therapeutic approaches, the concept of synthetic lethality for cancer therapy has been recently proposed. One such example is the use of PARP1 inhibitors to treat tumors carrying mutations in HR genes, such as BRCA1 and BRCA2. Inhibition of PARP1 compromises single-strand break repair (SSBR) pathway. Upon replication fork collision, the accumulated SSBs are converted to one-ended DSBs, which are efficiently repaired by the HR for cell survival. As a result, HR-deficient tumors with BRCA1-or BRCA2-deficiency exhibit extreme sensitivity to PARP-1 inhibition resulting in cell death. This approach was highly successful in targeting tumors with severe defects in Fanconi anemia (FA)-BRCA proteins which led to PARP inhibitors being tested in clinical trials. However, targeting cancer cells that express hypomorphic mutants of HR proteins is highly challenging since such partially functional mutants require a high dosage of PARP inhibitors for effective sensitization which renders normal cells toxic and can also lead to tumor resistance. The pathological RAD51C mutants that were identified in breast and ovarian cancer patients are hypomorphic with partial repair function. The first part of my Ph.D. thesis is aimed at developing an effective strategy to target cells that express hypomorphic RAD51C mutants. To this end, we used RAD51C deficient CL-V4B hamster cells and expressed the pathological RAD51C mutants associated with breast and ovarian cancers. Cells expressing RAD51C mutants that were severely defective for HR function exhibited high sensitivity to low doses of PARP1 inhibitor (4-ANI). These cells also accumulated in G2/M and displayed chromosomal aberrations. However, RAD51C mutants that were hypomorphic were partially sensitized even at higher concentrations of PARP inhibitor. RAD51C/ CL-V4B cells displayed higher PARP activity compared WT V79B cells. Notably, PARP activity was directly proportional to the sensitivity of RAD51C mutants towards 4-ANI where highly sensitive RAD51C mutants showed higher PARP activity and vice versa. Increased PARP activity was associated with replication stress as confirmed by an increase of PARP activity in cells treated with replication stress inducer, hydroxyurea (HU). Notably, treatment of CL-V4B cells with PARP1 inhibitor (4-ANI) resulted in the accumulation of PARP1 onto the chromatin which eventually led to the formation of DSBs which suggests that PARP1 entrapment triggers replication fork collapse leading to one-ended DSBs in S-phase. To further understand the molecular mechanism of PARP inhibitor-induced toxicity of RAD51C deficient cells, we carried out chromatin fractionation from V79B and CL-V4B cells at varying time points of 4-ANI treatment. Surprisingly, there was an enhanced loading of NHEJ proteins on chromatin in CL-V4B compared to V79B cells. Consistently, an increased error-prone NHEJ was observed in CL-V4B cells which resulted in increased chromosomal aberrations and cell death. Furthermore, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV restored this phenotype. Thus, error-prone NHEJ in collaboration with PARP inhibition sensitizes RAD51C deficient cells. Since ionizing radiation (IR) is known to stimulate NHEJ activity, we hypothesized that irradiation in combination with PARP inhibitor would further sensitize the RAD51C deficient tumors. Strikingly, stimulation of NHEJ by a low dose of IR in the PARP inhibitor-treated RAD51C deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity ‘synergistically’. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a ‘synergistic approach’ and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other HR pathway genes. In addition to nuclear functions, RAD51 paralogs RAD51C and XRCC3 have been shown to localize to mitochondria and contribute to mitochondrial genome stability. However, the molecular mechanism by which RAD51 and RAD51 paralogs carry out this function is unclear. The second part of my thesis was dedicated to studying whether RAD51C/XRCC3 facilitates mitochondrial DNA replication and the underlying mechanism by which RAD51C/XRCC3 participate in mitochondrial genome maintenance during unperturbed conditions. Using mitochondrial subfractionation we show that RAD51 and RAD51 paralogs (RAD51C and XRCC3) are an integral part of mitochondrial nucleoid and absence of RAD51C/XRCC3 and RAD51 prevents the restoration of mtDNA upon depletion of mtDNA. This suggests that RAD51 and RAD5C/XRCC3 participate in mtDNA replication. To determine whether this function of RAD51C is exclusive to mitochondria we expressed NLS mutant of RAD51C which was defective for nuclear functions. Interestingly, cells expressing RAD51C R366Q were able to efficiently repopulate the depleted mtDNA after EtBr stress similar to that of WT RAD51C expressing cells, suggesting a nuclear independent function of RAD51C in mitochondrial genome maintenance. mtDNA-IP analysis revealed that RAD51 and RAD51C/XRCC3 are recruited to the mtDNA control regions spontaneously along with mitochondrial polymerase POLG. Moreover, RAD51 was found to associate with TWINKLE helicase and this association was required for the recruitment of RAD51 and RAD51C/XRCC3 at the D-loop. As in nucleus, mtDNA replisome also encounters replication stresses like altered dNTP pools, a collision between replication and transcription machinery, rNTP incorporation, oxidative stress which hampers replication fork progression. Using Dideoxycytidine (ddC) as replication stress inducer in mitochondria, we observed nearly 3-4 fold enrichment of RAD51, RAD51C, XRCC3 and POLG at the mtDNA mutation hotspot region D310. Notably, RAD51C/XRCC3 deficient cells exhibited increased lesions in the mitochondrial genome spontaneously, pointing towards the importance of RAD51C/XRCC3 in the prevention of mtDNA lesions. Moreover, RAD51C/XRCC3 deficiency prevented the repair of ddC induced mtDNA lesions. Given that RAD51C/XRCC3 and RAD51 are localized to mtDNA control regions along with POLG and their deficiency affects mtDNA replication we were curious to learn the effect of RAD51C/XRCC3 deficiency on the recruitment of POLG in mtDNA. To test this we performed a mtDNA-IP assay of POLG in RAD51C deficient cells which revealed that deficiency of RAD51C/XRCC3 and RAD51 affected the recruitment of POLG on mtDNA control regions. As a consequence RAD51C/XRCC3 deficient cells exhibit aberrant mitochondrial functions. These findings propose a mechanism for a direct role of RAD51C/XRCC3 in maintaining the mtDNA integrity under replication stress conditions.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii