Rozprawy doktorskie na temat „Query expansion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Query expansion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Billerbeck, Bodo, i bodob@cs rmit edu au. "Efficient Query Expansion". RMIT University. Computer Science and Information Technology, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20060825.154852.
Pełny tekst źródłaEkberg-Selander, Karin, i Johanna Enberg. "Query Expansion : en jämförande studie av Automatisk Query Expansion med och utan relevans-feedback". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18416.
Pełny tekst źródłaUppsatsnivå: D
Cheang, Chan Wa. "Web query expansion by WordNet". Thesis, University of Macau, 2005. http://umaclib3.umac.mo/record=b1445899.
Pełny tekst źródłaBrandao, Wladmir Cardoso. "Exploiting entities for query expansion". Universidade Federal de Minas Gerais, 2013. http://hdl.handle.net/1843/ESBF-9GMJW2.
Pełny tekst źródłaUma fração substancial de consultas submetidas às máquinas de busca na web fazem referência a entidades, como pessoas, organizações e locais. No presente trabalho, nós propomos abordagens orientadas a entidade para expansão de consulta que exploram aspectos semânticos em bases de conhecimento para derivar evidências discriminativas de termos e técnicas de aprendizagem de máquina, com o intuito de combinar de maneira efetiva as evidências a fim de se obter um ranking de termos candidatos para expansão. Particularmente, nossa abordagem supervisionada (UQEE) utiliza-se de evidências derivadas da estrutura semântica implícita em templates de infoboxes em artigos da Wikipedia, enquanto nossa abordagem de aprendizagem para ranking (L2EE) considera evidências semânticas derivadas do conteúdo de campos de artigos da Wikipedia para automaticamente rotular exemplos de treino proporcionalmente à efetividade observada na recuperação. Além disso, nós propomos uma abordagem auto-supervisionada para geração automática de infoboxes para artigos da Wikipedia (WAVE). Experimentos comprovam a efetividade de nossas abordagens, com ganhos significativos comparados às abordagens estado-da-arte em pseudo-relevance feedback (PRF) e PRF baseados em entidades.
Höglund, Sofia. "Query expansion med semantiskt relaterade termer". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-16707.
Pełny tekst źródłaUppsatsnivå: D
Bilotti, Matthew W. (Matthew William) 1981. "Query expansion techniques for question answering". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27083.
Pełny tekst źródłaIncludes bibliographical references (p. 105-109).
Query expansion is a technique used to boost performance of a document retrieval engine, such as those commonly found in question answering (QA) systems. Common methods of query expansion for Boolean keyword-based document retrieval engines include inserting query terms, such as alternate inflectional or derivational forms generated from existing query terms, or dropping query terms that are, for example, deemed to be too restrictive. In this thesis, I present a quantitative evaluation against a test; collection of my own design of five query expansion techniques, two term expansion methods and three term-dropping strategies. I present results that show that there exist best-performing query expansion algorithms that can be ex- perimentally optimized for specific tasks. My findings pose questions that suggest interesting avenues for further study of query expansion algorithms.
by Matthew W. Bilotti.
M.Eng.
Khandpur, Rupinder P. "Augmenting Dynamic Query Expansion in Microblog Texts". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/84852.
Pełny tekst źródłaPh. D.
Zhuang, Wenjie. "Query Expansion Study for Clinical Decision Support". Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/82068.
Pełny tekst źródłaMaster of Science
Seher, Indra. "A personalised query expansion approach using context". View thesis, 2007. http://handle.uws.edu.au:8081/1959.7/33427.
Pełny tekst źródłaA thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy to the College of Health & Science, School of Computing and Mathematics, University of Western Sydney. Includes bibliography.
Qiu, Yonggang. "Automatic query expansion based on a similarity thesaurus /". [S.l.] : [s.n.], 1995. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11158.
Pełny tekst źródłaIbrahim, Duraid M. "Natural language query translation and expansion in information retrieval". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0024/MQ51722.pdf.
Pełny tekst źródłaMagennis, Mark. "The potential and actual effectiveness of interactive query expansion". Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360116.
Pełny tekst źródłaAxensten, Siri. "En komparativ litteraturstudie av olika termkällor för query expansion". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17718.
Pełny tekst źródłaUppsatsnivå: D
Eklund, Johan, i Anders Stenström. "En komparativ studie av fem rankningsalgoritmer för query expansion". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18322.
Pełny tekst źródłaUppsatsnivå: D
Wien, Sigurd. "Efficient Top-K Fuzzy Interactive Query Expansion While Formulating a Query : From a Performance Perspective". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23010.
Pełny tekst źródłaHellström, Else-Britt. "Den kombinerade effekten av query-expansion och query-strukturer på återvinningseffektiviteten i ett probabilistiskt system". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17554.
Pełny tekst źródłaUppsatsnivå: D
Guisado, Gámez Joan. "Query expansion by relying on the structure of knowledge bases". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/460767.
Pełny tekst źródłaLes tècniques d'expansió de consultes tenen com a objecte millorar els resultats obtinguts per la consulta d'un usuari a partir de la introducció de termes d'expansió, anomenat característiques d'expansió. Les característiques d'expansió introdueixen nous conceptes que estan relacionats semànticament amb els conceptes de la consulta de l'usuari i que permeten obtenir documents que d'altra manera no es podrien obtenir. Per tant, el repte és seleccionar les característiques d'expansió que són capaces de millorar al màxim els resultats, doncs una mala elecció pot ser contra-productiva. En aquesta tesis, utilitzem una font externa d'informació, una Base de Coneixement (KB), com a font de característiques d'expansió. Una KB és un conjunt d'entrades, cadascuna de les quals representa un concepte i que té, com a mínim, un nom, que és susceptible de ser usat com a característica d'expansió. Les tècniques emmarcades en aquesta família han esdevingut populars degut al creixement de la informació disponible, per exemple, Wikipedia. Particularment, nosaltres en centrem en utilitzar aquelles KB les entrades de les quals estan relacionades entre si, conformant d'aquesta manera, un graf d'entrades. Segons les nostres informacions, la majora de les tècniques emmarcades en aquesta família utilitzen algun tipus d'anàlisi lingüístic, o estan basades en d'altres tècniques com relevance feedback. Ara bé, la estructura subjacent de la xarxa gairebé no s'ha utilitzat. En aquesta tesis, mostrem que la estructura es pot fer servir per identificar característiques d'expansió fiables pel procés d'expansió de consultes. De fet, proposem una tècnica d'expansió novell, Structural Query Expansion (SQE), que la explota. Perquè SQE pugui beneficiar-se de les particularitats estructurals de les KBs, hem proposat també una metodologia per revelar les característiques estructurals que, donada una consulta, permeten identificar aquells nodes que són una bona font de característiques d'expansió, els anomenats, nodes d'expansió. Aquesta metodologia consisteix en construir un ground truth que relaciona una conjunt de consultes amb el seu optimal expansion query graph. L'optimal expansion query graph és el conjunt de nodes d'expansió que quan s'utilitzen com a font de característiques d'expansió, permeten obtenir els millors resultats en termes de precisió. Un cop tenim els optimal expansion query graphs, els comparem entre si per a buscar característiques compartides. SQE materialitza aquestes característiques en un conjunt de motius estructurals. En el cas de Wikipedia hem trobat 2 motius: el triangular i el quadràtic. En els dos casos el node de la consulta ha d'estar doblement lincat amb el node d'expansió. En el triangular, les categories del node d'expansió ha de pertànyer, com a mínim, a les mateixes categories que el node de la consulta, mentre que en el quadràtic tan sols cal que les categories del node de la consulta i el d'expansió estiguin relacionades. Aquest motius s'utilitzen per, donada una consulta, identificar tots els seus nodes d'expansió. Hem dissenyat aquesta tècnica com una tècnica ortogonal a d'altres ja que està desacoblada del procés de cerca i no depèn de la col·lecció de documents. Hem provar la nostra tècnica amb 3 jocs de dades diferents per a evitar qualsevol tipus d'especialització. Els resultats són consistents entre els tres. Hem validat els resultats amb testos de significança estadística obtenint millores del 150% en la precisió. Finalment, pel que fa el rendiment de la nostra proposta, mostrem que s'executa en mil·lisegons, i això la fa susceptible de ser utilitzada en sistemes d'expansió reals. Això és especialment rellevant perquè, segons les nostres informacions, aquest és un aspecte que s'ignora en la literatura i, per tant, és difícil de saber la viabilitat de les propostes que existeixen en entorns reals.
Efthimiadis, Efthimis Nikolaos. "Interactive query expansion and relevance feedback for document retrieval systems". Thesis, City University London, 1992. http://openaccess.city.ac.uk/7891/.
Pełny tekst źródłaBhogal, Jagdev. "Investigating ontology based query expansion using a probabilistic retrieval model". Thesis, City University London, 2011. http://openaccess.city.ac.uk/2946/.
Pełny tekst źródłaKojic, Kemal, i Emil Petersson. "Automatisk synonymgenerering med Word2Vec for query expansion inom e-handel". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20818.
Pełny tekst źródłaIn this thesis, we examine automatic synonym generation through the use of the machine learning algorithm Word2Vec that has been trained using a Google News data set containing a hundred million words to find out if it is suitable for query expansions in e-commerce. This is examined through the use of product- and event data from a well-known fashion company where synonyms are generated from search-queries that have been logged in the event data through different methods, resulting in thesaurus' that are used in future searches with the use of query expansions. In order to answer the thesis' research question, a quantitative analysis is performed. This analysis is performed on data such as matched payments, product matches, no-hits and search time. Information about this data is generated through a search simulator that simulates logged events from user sessions in a e-commerce system. The generated thesaurus' are later filtered through the removal of synonyms that are connected to search queries whose results have produced worse results than the results without synonyms. In order to validate our results from the quantitative analysis a qualitative analysis is also performed on the difference of the search result that the different methods produce. In this qualitative analysis we research what type of products that the added synonyms produce in order to understand the relevance of the search query. Our tests show that the lower the threshold is, the higher the number of product hits and the lower the number of no-hits. Our tests shows that the number of product hits was increased by between 4\%-10\%, the number of no-hits was reduced by 11\%-22\%. In all of the tests using automatically generated synonyms, the results show that the majority of the purchased products are presented in the first half of the search result, however, in all of the tests using automatically generated synonyms the number of purchases in the first position of the search result was reduced.
Dai, James Jian 1982. "Visual intelligence for online communities : commonsense image retrieval by query expansion". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/26916.
Pełny tekst źródłaIncludes bibliographical references (leaves 65-67).
This thesis explores three weaknesses of keyword-based image retrieval through the design and implementation of an actual image retrieval system. The first weakness is the requirement of heavy manual annotation of keywords for images. We investigate this weakness by aggregating the annotations of an entire community of users to alleviate the annotation requirements on the individual user. The second weakness is the hit-or-miss nature of exact keyword matching used in many existing image retrieval systems. We explore this weakness by using linguistics tools (WordNet and the OpenMind Commonsense database) to locate image keywords in a semantic network of interrelated concepts so that retrieval by keywords is automatically expanded semantically to avoid the hit-or-miss problem. Such semantic query expansion further alleviates the requirement for exhaustive manual annotation. The third weakness of keyword-based image retrieval systems is the lack of support for retrieval by subjective content. We investigate this weakness by creating a mechanism to allow users to annotate images by their subjective emotional content and subsequently to retrieve images by these emotions. This thesis is primarily an exploration of different keyword-based image retrieval techniques in a real image retrieval system. The design of the system is grounded in past research that sheds light onto how people actually encounter the task of describing images with words for future retrieval. The image retrieval system's front-end and back- end are fully integrated with the Treehouse Global Studio online community - an online environment with a suite of media design tools and database storage of media files and metadata.
(cont.) The focus of the thesis is on exploring new user scenarios for keyword-based image retrieval rather than quantitative assessment of retrieval effectiveness. Traditional information retrieval evaluation metrics are discussed but not pursued. The user scenarios for our image retrieval system are analyzed qualitatively in terms of system design and how they facilitate the overall retrieval experience.
James Jian Dai.
S.M.
Cui, Jun. "Query Expansion Research and Application in Search Engine Based on Concepts Lattice". Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5762.
Pełny tekst źródłaWard, Erik. "Tweet Collect: short text message collection using automatic query expansion and classification". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-194961.
Pełny tekst źródłaLi, Zhihan. "Improvement to Chinese information retrieval by incorporating word segmentation and query expansion". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/30422/1/Zhihan_Li_Thesis.pdf.
Pełny tekst źródłaJohansson, Emma, i Birgitta Jonsson. "Query expansion med hjälp av en elektronisk tesaurus i en bibliografisk online-databas". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20957.
Pełny tekst źródłaUppsatsnivå: D
Wang, Xinkai. "Chinese-English cross-lingual information retrieval in biomedicine using ontology-based query expansion". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/chineseenglish-crosslingual-information-retrieval-in-biomedicine-using-ontologybased-query-expansion(1b7443d3-3baf-402b-83bb-f45e78876404).html.
Pełny tekst źródłaErmakova, Liana. "Short text contextualization in information retrieval : application to tweet contextualization and automatic query expansion". Thesis, Toulouse 2, 2016. http://www.theses.fr/2016TOU20023/document.
Pełny tekst źródłaThe efficient communication tends to follow the principle of the least effort. According to this principle, using a given language interlocutors do not want to work any harder than necessary to reach understanding. This fact leads to the extreme compression of texts especially in electronic communication, e.g. microblogs, SMS, search queries. However, sometimes these texts are not self-contained and need to be explained since understanding them requires knowledge of terminology, named entities or related facts. The main goal of this research is to provide a context to a user or a system from a textual resource.The first aim of this work is to help a user to better understand a short message by extracting a context from an external source like a text collection, the Web or the Wikipedia by means of text summarization. To this end we developed an approach for automatic multi-document summarization and we applied it to short message contextualization, in particular to tweet contextualization. The proposed method is based on named entity recognition, part-of-speech weighting and sentence quality measuring. In contrast to previous research, we introduced an algorithm for smoothing from the local context. Our approach exploits topic-comment structure of a text. Moreover, we developed a graph-based algorithm for sentence reordering. The method has been evaluated at INEX/CLEF tweet contextualization track. We provide the evaluation results over the 4 years of the track. The method was also adapted to snippet retrieval. The evaluation results indicate good performance of the approach
Zhu, Weizhong Allen Robert B. "Text clustering and active learning using a LSI subspace signature model and query expansion /". Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3077.
Pełny tekst źródłaNwesri, Abdusalam F. Ahmad, i nwesri@yahoo com. "Effective retrieval techniques for Arabic text". RMIT University. Computer Science and IT, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081204.163422.
Pełny tekst źródłaLundmark, Sofia. "Automatisk query expansion : en komparativ studie av olika strategier för termklustring baserade på lokal analys". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-16688.
Pełny tekst źródłaUppsatsnivå: D
Bettio, Raphael Winckler de. "Inter-relaão das técnicas Term Extration e Query Expansion aplicadas na recuperação de documentos textuais". Florianópolis, SC, 2007. http://repositorio.ufsc.br/xmlui/handle/123456789/90753.
Pełny tekst źródłaMade available in DSpace on 2012-10-23T14:47:37Z (GMT). No. of bitstreams: 1 246508.pdf: 642498 bytes, checksum: 8cdf470f4a300ff9badf3d49f0a8247b (MD5)
Conforme Sighal (2006) as pessoas reconhecem a importância do armazenamento e busca da informação e, com o advento dos computadores, tornou-se possível o armazenamento de grandes quantidades dela em bases de dados. Em conseqüência, catalogar a informação destas bases tornou-se imprescindível. Nesse contexto, o campo da Recuperação da Informação, surgiu na década de 50, com a finalidade de promover a construção de ferramentas computacionais que permitissem aos usuários utilizar de maneira mais eficiente essas bases de dados. O principal objetivo da presente pesquisa é desenvolver um Modelo Computacional que possibilite a recuperação de documentos textuais ordenados pela similaridade semântica, baseado na intersecção das técnicas de Term Extration e Query Expansion.
Lyall-Wilson, Jennifer Rae. "Automatic Concept-Based Query Expansion Using Term Relational Pathways Built from a Collection-Specific Association Thesaurus". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/306773.
Pełny tekst źródłaShiri, Ali Asghar. "End-user interaction with thesaurus-enhanced search interfaces : an evaluation of search term selection for query expansion". Thesis, University of Strathclyde, 2003. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21521.
Pełny tekst źródłaCarstens, Carola [Verfasser], i Christa [Akademischer Betreuer] Womser-Hacker. "Ontology Based Query Expansion - Retrieval Support for the Domain of Educational Research / Carola Carstens. Betreuer: Christa Womser-Hacker". Hildesheim : Universitätsbibliothek Hildesheim, 2012. http://d-nb.info/1023809400/34.
Pełny tekst źródłaJohansson, Henrik. "Using clickstream data as implicit feedback in information retrieval systems". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233870.
Pełny tekst źródłaDet här examensarbetets mål är att undersöka om Wikipedias klickströmsdata kan användas för att förbättra sökprestanda för informationsökningssystem. Arbetet har utförts under antagandet att en övergång mellan två artiklar på Wikipedia sammankopplar artiklarnas innehåll och är av intresse för användaren. För att kunna utnyttja klickströmsdatan krävs det att den struktureras på ett användbart sätt så att det givet en artikel går att se hur läsare har förflyttat sig ut eller in mot artikeln. Vi valde att utnyttja datamängden genom en automatisk sökfrågeexpansion. Två olika metoder togs fram, där den första expanderar sökfrågan med hela artikeltitlar medans den andra expanderar med enskilda ord ur en artikeltitel.Undersökningens resultat visar att den ordbaserade expansionsmetoden presterar bättre än metoden som expanderar med hela artikeltitlar. Den ordbaserade expansionsmetoden lyckades uppnå en förbättring för måttet MAP med 11.21%. Från arbetet kan man också se att expansionmetoden enbart förbättrar prestandan när täckningen för den ursprungliga sökfrågan är liten. Gällande strukturen på klickströmsdatan så presterade den utgående strukturen bättre än den ingående. Examensarbetets slutsats är att denna klickströmsdata lämpar sig bra för att förbättra sökprestanda för ett informationsökningssystem.
Volpe, Isabel Cristina. "Cell assemblies para expansão de consultas". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/32858.
Pełny tekst źródłaOne of the main tasks in Information Retrieval is to match a user query to the documents that are relevant for it. This matching is challenging because in many cases the keywords the user chooses will be different from the words the authors of the relevant documents have used. Throughout the years, many approaches have been proposed to deal with this problem. One of the most popular consists in expanding the query with related terms with the goal of retrieving more relevant documents. In this work, we propose a new method in which a Cell Assembly model is applied for query expansion. Cell Assemblies are reverberating circuits of neurons that can persist long beyond the initial stimulus has ceased. They learn through Hebbian Learning rules and have been used to simulate the formation and the usage of human concepts. We adapted the Cell Assembly model to learn relationships between the terms in a document collection. These relationships are then used to augment the original queries. Our experiments use standard Information Retrieval test collections and show that some queries significantly improved their results with the proposed technique.
Mahendiran, Aravindan. "Automated Vocabulary Building for Characterizing and Forecasting Elections using Social Media Analytics". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25430.
Pełny tekst źródłaMaster of Science
Janaite, Neto Jorge [UNESP]. "Recuperação de informação baseada em ontologia: uma proposta utilizando o modelo vetorial". Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154340.
Pełny tekst źródłaApproved for entry into archive by Satie Tagara (satie@marilia.unesp.br) on 2018-06-25T13:46:39Z (GMT) No. of bitstreams: 1 janaiteneto_j_me_mar.pdf: 1649007 bytes, checksum: 66467a076d4f716197896c6dc3c5ee2b (MD5)
Made available in DSpace on 2018-06-25T13:46:39Z (GMT). No. of bitstreams: 1 janaiteneto_j_me_mar.pdf: 1649007 bytes, checksum: 66467a076d4f716197896c6dc3c5ee2b (MD5) Previous issue date: 2018-05-30
Não recebi financiamento
A recuperação de informação ocorre por meio da comparação entre as representações dos documentos de um acervo e a representação da necessidade de informação do usuário. Um documento é recuperado quando sua representação coincidir total ou parcialmente com a representação da necessidade de informação do usuário. O processo de recuperação de informação pode ser visto como um problema linguístico no qual o conteúdo informacional dos documentos e a necessidade de informação do usuário são representados por um conjunto de termos. A eficiência do processo de recuperação de informação depende da qualidade das representações dos documentos e dos termos empregados pelo usuário para representar sua necessidade de informação. Quanto mais compatíveis forem essas representações maior será a eficiência do processo de recuperação. A partir de uma pesquisa exploratória e descritiva fundamentada em bibliografia específica, este trabalho propõe a utilização de ontologias computacionais em sistemas de recuperação de informação baseados no Modelo Espaço Vetorial. As ontologias são empregadas como estrutura terminológica externa utilizadas tanto na expansão dos termos de indexação quanto na expansão dos termos que compõe a expressão de busca. A expansão dos termos de indexação é feita logo após a extração dos termos mais representativos do documento em análise durante o processo de indexação, consistindo na adição de novos termos conceitualmente relacionados a fim de enriquecer a representação do documento. A expansão da consulta é obtida a partir da adição de novos termos relacionados aos já existentes na expressão de busca com o objetivo de melhor contextualizá-los. Nesta proposta utiliza-se apenas a estrutura terminológica e hierárquica oferecida por uma ontologia computacional OWL, sem considerar os demais tipos de relações possíveis nem as restrições lógicas que podem ser descritas, podendo esses recursos serem utilizados em trabalhos futuros na tentativa de melhorar ainda mais a eficiência do processo de recuperação. A proposta apresentada neste estudo pode ser implementada e futuramente tornar-se um sistema de recuperação de informação totalmente operacional.
The information retrieval occurs by means of match between the representations of documents from a collection and the representation of user information’s needs. A document is retrieved when its representation matches totally or partially to the user information’s needs. The process of information retrieval can be seen as a linguistic issue in which the document information content and the user information need are represented by a set of terms. Its efficiency depends on the quality of the representations of the documents and the terms used to represent the user’s information need. The more compatible these representations were, the more efficient the retrieval process. Based on an exploratory and descriptive research substantiated in a specific bibliography, this paper offers to use computational ontologies in information retrieval systems based on the Vector Space Model. The ontologies are applied as external terminological structures used in the indexing terms expansion as well as in the expansion of the terms which compound the query expression. The indexing terms expansion is made as soon as the extraction of the more representative terms of the document in analysis during the indexing process, consisting on the adding of new conceptually related terms in order to improve the document representation. Query expansion is obtained from adding new related terms to the existent ones in the query expression to better contextualize them. In this propose, only the terminological and hierarchical structure offered by an OWL computational ontology was used, regardless other possible relations and logical restrictions that could be descripted, saving these resources to be used in further works in an attempt to improve the retrieval process efficiency. The shown proposition can be implemented and become a fully operational information retrieval system.
Hagberg, Lena, i Johanna Müntzing. "En tesaurus som ledsagare : En jämförande studie av tre sökstrategiers inverkan på återvinningsresultatet i en bibliografisk databas". Thesis, Högskolan i Borås, Institutionen Biblioteks- och informationsvetenskap / Bibliotekshögskolan, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18391.
Pełny tekst źródłaUppsatsnivå: D
Bouchoucha, Arbi. "Diversified query expansion". Thèse, 2015. http://hdl.handle.net/1866/12335.
Pełny tekst źródłaSearch Result Diversification (SRD) aims to select diverse documents from the search results in order to cover as many search intents as possible. For the existing approaches, a prerequisite is that the initial retrieval results contain diverse documents and ensure a good coverage of the query aspects. In this thesis, we investigate a new approach to SRD by diversifying the query, namely diversified query expansion (DQE). Expansion terms are selected either from a single resource or from multiple resources following the Maximal Marginal Relevance principle. In the first contribution, we propose a new term-level DQE method in which word similarity is determined at the surface (term) level based on the resources. When different resources are used for the purpose of DQE, they are combined in a uniform way, thus totally ignoring the contribution differences among resources. In practice the usefulness of a resource greatly changes depending on the query. In the second contribution, we propose a new method of query level resource weighting for DQE. Our method is based on a set of features which are integrated into a linear regression model and generates for a resource a number of expansion candidates that is proportional to the weight of that resource. Existing DQE methods focus on removing the redundancy among selected expansion terms and no attention has been paid on how well the selected expansion terms can indeed cover the query aspects. Consequently, it is not clear how we can cope with the semantic relations between terms. To overcome this drawback, our third contribution in this thesis aims to introduce a novel method for aspect-level DQE which relies on an explicit modeling of query aspects based on embedding. Our method (called latent semantic aspect embedding) is trained in a supervised manner according to the principle that related terms should correspond to the same aspects. This method allows us to select expansion terms at a latent semantic level in order to cover as much as possible the aspects of a given query. In addition, this method also incorporates several different external resources to suggest potential expansion terms, and supports several constraints, such as the sparsity constraint. We evaluate our methods using ClueWeb09B dataset and three query sets from TRECWeb tracks, and show the usefulness of our proposed approaches compared to the state-of-the-art approaches.
Tai, Chia-Hung, i 戴嘉宏. "Fuzzy Cluster-Based Query Expansion". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/41760976903310141825.
Pełny tekst źródła國立中山大學
資訊管理學系研究所
92
Advances in information and network technologies have fostered the creation and availability of a vast amount of online information, typically in the form of text documents. Information retrieval (IR) pertains to determining the relevance between a user query and documents in the target collection, then returning those documents that are likely to satisfy the user’s information needs. One challenging issue in IR is word mismatch, which occurs when concepts can be described by different words in the user queries and/or documents. Query expansion is a promising approach for dealing with word mismatch in IR. In this thesis, we develop a fuzzy cluster-based query expansion technique to solve the word mismatch problem. Using existing expansion techniques (i.e., global analysis and non-fuzzy cluster-based query expansion) as performance benchmarks, our empirical results suggest that the fuzzy cluster-based query expansion technique can provide a more accurate query result than the benchmark techniques can.
Lin, Tien-Chien, i 林典鍵. "Query Expansion via Wikipedia Link". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/18697675479617353053.
Pełny tekst źródła朝陽科技大學
資訊工程系碩士班
96
Query expansion is a well-known technique to increase recall value. Previous works show that good query expansion can also increase top N precision. Since users usually browse top N search results first, the precision of top N search result is very important. In this paper, we use the anchor texts in Wikipedia as a resource to expand the original query. Query term in Wikipedia will be expanded with the anchor texts in the Wikipedia page. We conduct experiments on TREC data disk 4 and 5 and compare with Okapi BM25. The experiment results show improvement on mean average precision.
Huang, Chun-Neng, i 黃群能. "Cluster-based Query Expansion Technique". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/64988777413472635153.
Pełny tekst źródła國立中山大學
資訊管理學系研究所
91
As advances in information and networking technologies, huge amount of information typically in the form of text documents are available online. To facilitate efficient and effective access to documents relevant to users’ information needs, information retrieval systems have been imposed a more significant role than ever. One challenging issue in information retrieval is word mismatch that refers to the phenomenon that concepts may be described by different words in user queries and/or documents. The word mismatch problem, if not appropriately addressed, would degrade retrieval effectiveness critically of an information retrieval system. In this thesis, we develop a cluster-based query expansion technique to solve the word mismatch problem. Using the traditional query expansion techniques (i.e., global analysis and local feedback) as performance benchmarks, the empirical results suggest that when a user query only consists of one query term, the global analysis technique is more effective. However, if a user query consists of two or more query terms, the cluster-based query expansion technique can provide a more accurate query result, especially within the first few top-ranked documents retrieved.
Lin, Hsi-Ching, i 林錫慶. "New Methods for Query Expansion and Query Reweighting for Document Retrieval". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/84539972972055978983.
Pełny tekst źródła國立臺灣科技大學
資訊工程系
93
In document retrieval systems, query terms play an important role which can affect the performance of document retrieval systems. The performance of document retrieval systems can be improved by using query terms expansion techniques and query terms reweighting techniques. In this thesis, we present two new methods for query terms expansion and query terms rewieghting. The first method chooses additional query terms for query expansion according to the degrees of importance of relevant terms and use fuzzy rules to infer their weights for document retrieval. The second method adjusts the weights of query terms to be optimal using neural networks for document retrieval. The proposed methods increase the performance of information retrieval systems for dealing with document retrieval.
Seher, Indra, University of Western Sydney, College of Health and Science i School of Computing and Mathematics. "A personalised query expansion approach using context". 2007. http://handle.uws.edu.au:8081/1959.7/33427.
Pełny tekst źródłaDoctor of Philosophy (PhD)
Chiang, Shun-hsien, i 江舜絃. "A Knowledge-based Chinese Query Expansion System". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/94df24.
Pełny tekst źródła國立中央大學
資訊管理研究所
97
Search engine has become an essential tool in the era of the information explosion, hence the topic of helping users to filter an excess of information and take personal implicit searching intentions into consideration in order to reach personalized searching ranking has always been important. Knowledge ontology was used to depict user’s preference and a Chinese keyword recommendation system was proposed to accomplish a Chinese Query Expansion. Analyzing the site maps of the whole user’s past browsing via web crawler, constructing a wider range of personalized domain knowledge automatically by Formal Concept Analysis, and combining Query Expansion and personal ontology which is automatic-learning through HowNet, the more complete information can be accessed easily. When user submits keywords, the system will compare keywords and concepts of personalized ontology in user’s profile in order to produce extended keyword sets similar to the keywords inputted and to be recommended to user to acquire more document information including the same concepts. The experimental results show that the system increases the retrieval precision over 70% and the retrieval precision almost doubles. By filtering most web documents unconcerned with user’s interests to acquire the actual needed information. The algorithm we proposed that provide automatic-generated user’s knowledge database, a wider range of training data source, a semi-automatic recommended mechanism of Chinese expansion words, and a sememe database of HowNet in Traditional Chinese, is proved to have better retrieval accuracy in the Chinese environment compare to methods of ordinary ontology query expansion.
Cai, Zih-Long, i 蔡子龍. "Interactive Web Query Expansion Using Concept Hierarchy". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/36938834615691881275.
Pełny tekst źródła國立高雄第一科技大學
資訊管理所
97
Traditional data retrieval processes usually use the Boolean operation to filter out unnecessary data. Such approach only produces a ‘0’ or ‘1’ evaluation result, where ‘0’ expresses both terms are different, and ‘1’ means they are equivalent. However, the Boolean operation method is not practical enough, as there may be some fuzzy space laid between such two-type results. However how to analyze the fuzzy space is a Latent Semantic Analysis topic. Our objective in this thesis is to improve the crisp analysis induced by the Boolean operation method. We conducted Web Mining techniques in building an auto-constructed Knowledge Structure, which keeps useful information of terms, including Concept Hierarchy, Link Type and Information Distance. To utilize this useful information, our approach introduces a Query Expansion process to extend the searching result with potential associations with user’s searching concept. On the other hand, for those users who are not well-experienced or are lacking of professional domain knowledge, we provide various types of Query Expansion strategies to assist users in narrowing or broadening the searching scopes. Based on our approach, users could spend less time and effort in the on-line data retrieval process, but gain more searching result, together with some useful information close to their needs.
Chang, Jed Kao-Tung, i 張果通. "Query expansion based on attributes of objects". Thesis, 1999. http://ndltd.ncl.edu.tw/handle/71357177671969472146.
Pełny tekst źródła國立臺灣大學
資訊工程學研究所
87
The thesis proposes a query expansion mechanism on the attributes of the objects in a digital library. The query expansion mechanism involves matching the desired attributes specified in the user's query and the attributes of the objects. Objects with matched attributes are then forwarded to the search utilities. The proposed query expansion mechanism effectively closes up the gap between the user's concept and terms presented in the digital library. As a result, the precision and recall rates of the search utilities are improved. This thesis elaborates the data structures developed for conducting the proposed query expansion and demonstrates the effects achieved. This thesis also conducts an experiment to evaluate the proposed mechanism.
Lin, Shen-mu, i 林伸穆. "Applying Novel Relevance Feedback in Query Expansion Enhancement". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/28437136319094505566.
Pełny tekst źródła國立雲林科技大學
資訊管理系碩士班
94
Query Expansion was designed to overcome the barren query words issued by the user and has been applied in many commercial products. This treatment tries to expand query words to identify users’ real requirement based on semantic computation. It may be critical to deal with the problem of information overloading and diminish the using threshold, however the modern retrieval systems usually lack user modeling and are not adaptive to individual users, resulting in inherently non-optimal retrieval performance. In this study, we propose the LLSF method based on each individual search history to automatically generate specific personalized profile matrix. By which to generate context-based expanded query words. Considering the accuracy of retrieving performance, we process query words re-weighting and document pooling algorithm to achieve this goal. Finally, the documents list is ranked by the way of stressed density distribution modeling. And the experimental results show that our framework corresponds to personalization and the performance is very promising.
Huang, Szu-Jui, i 黃思瑞. "Automatic Query Expansion based on Non-Ramdomness Model". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/70455312256143540096.
Pełny tekst źródła國立中央大學
資訊管理研究所
95
Automatic query expansion addresses the problem of word mismatching that the words provided by the users in the query are not consistent with the words used by the authors. The problem of word mismatching can result in poor retrieval effectiveness. Many techniques of automatic query expansion have been developed and proved to improve retrieval effectiveness. We apply the concept of the non-randomness of probabilistic model to conceive a method for automatic query expansion. Top-ranked documents that are retrieved in the initial retrieval are used as the source of expansion terms. The candidate expansion terms are re-weighted and selected within Rocchio framework. Experimenting results show that our approach can improve the effectiveness of retrieving significantly. The experiments have the parameters that can influence the performance of automatic query expansion considered and analyzed, including number of selected documents, number of expansion terms and parameters in the Rocchio framework.