Gotowa bibliografia na temat „QUANTUM SUPERCOOLED LIQUID”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „QUANTUM SUPERCOOLED LIQUID”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "QUANTUM SUPERCOOLED LIQUID"

1

Hyeon-Deuk, Kim, i Koji Ando. "Distinct structural and dynamical difference between supercooled and normal liquids of hydrogen molecules". Physical Chemistry Chemical Physics 18, nr 4 (2016): 2314–18. http://dx.doi.org/10.1039/c5cp06615h.

Pełny tekst źródła
Streszczenie:
The recently developed quantum molecular dynamics method including nuclear quantum effects demonstrated that supercooled hydrogens exhibit intrinsic properties including a precursor of superfluidity which neither normal hydrogen liquid nor solid possesses.
Style APA, Harvard, Vancouver, ISO itp.
2

Pietropaolo, Antonino, Roberto Senesi, Carla Andreani i Jerry Mayers. "Quantum effects in water: proton kinetic energy maxima in stable and supercooled liquid". Brazilian Journal of Physics 39, nr 2 (czerwiec 2009): 318–21. http://dx.doi.org/10.1590/s0103-97332009000300014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Naserifar, Saber, i William A. Goddard. "Liquid water is a dynamic polydisperse branched polymer". Proceedings of the National Academy of Sciences 116, nr 6 (24.01.2019): 1998–2003. http://dx.doi.org/10.1073/pnas.1817383116.

Pełny tekst źródła
Streszczenie:
We developed the RexPoN force field for water based entirely on quantum mechanics. It predicts the properties of water extremely accurately, withTmelt= 273.3 K (273.15 K) and properties at 298 K: ΔHvap= 10.36 kcal/mol (10.52), density = 0.9965 g/cm3(0.9965), entropy = 68.4 J/mol/K (69.9), and dielectric constant = 76.1 (78.4), where experimental values are in parentheses. Upon heating from 0.0 K (ice) to 273.0 K (still ice), the average number of strong hydrogen bonds (SHBs, rOO≤ 2.93 Å) decreases from 4.0 to 3.3, but upon melting at 273.5 K, the number of SHBs drops suddenly to 2.3, decreasing slowly to 2.1 at 298 K and 1.6 at 400 K. The lifetime of the SHBs is 90.3 fs at 298 K, increasing monotonically for lower temperature. These SHBs connect to form multibranched polymer chains (151 H2O per chain at 298 K), where branch points have 3 SHBs and termination points have 1 SHB. This dynamic fluctuating branched polymer view of water provides a dramatically modified paradigm for understanding the properties of water. It may explain the 20-nm angular correlation lengths at 298 K and the critical point at 227 K in supercooled water. Indeed, the 15% jump in the SHB lifetime at 227 K suggests that the supercooled critical point may correspond to a phase transition temperature of the dynamic polymer structure. This paradigm for water could have a significant impact on the properties for protein, DNA, and other materials in aqueous media.
Style APA, Harvard, Vancouver, ISO itp.
4

Agrafonov, Yury V., i Ivan S. Petrushin. "Random First Order Transition from a Supercooled Liquid to an Ideal Glass (Review)". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, nr 3 (18.09.2020): 291–302. http://dx.doi.org/10.17308/kcmf.2020.22/2959.

Pełny tekst źródła
Streszczenie:
The random first order transition theory (RFOT) describing the transition from a supercooled liquid to an ideal glass has been actively developed over the last twenty years. This theory is formulated in a way that allows a description of the transition from the initial equilibrium state to the final metastable state without considering any kinetic processes. The RFOT and its applications for real molecular systems (multicomponent liquids with various intermolecular potentials, gel systems, etc.) are widely represented in English-language sources. However, these studies are practically not described in any Russian sources. This paper presents an overview of the studies carried out in this field. REFERENCES 1. Sanditov D. S., Ojovan M. I. Relaxation aspectsof the liquid—glass transition. Uspekhi FizicheskihNauk. 2019;189(2): 113–133. DOI: https://doi.org/10.3367/ufnr.2018.04.0383192. Tsydypov Sh. B., Parfenov A. N., Sanditov D. S.,Agrafonov Yu. V., Nesterov A. S. Application of themolecular dynamics method and the excited statemodel to the investigation of the glass transition inargon. Available at: http://www.isc.nw.ru/Rus/GPCJ/Content/2006/tsydypov_32_1.pdf (In Russ.). GlassPhysics and Chemistry. 2006;32(1): 83–88. DOI: https://doi.org/10.1134/S10876596060101113. Berthier L., Witten T. A. Glass transition of densefluids of hard and compressible spheres. PhysicalReview E. 2009;80(2): 021502. DOI: https://doi.org/10.1103/PhysRevE.80.0215024. Sarkisov G. N. Molecular distribution functionsof stable, metastable and amorphous classical models.Uspekhi Fizicheskih Nauk. 2002;172(6): 647–669. DOI:https://doi.org/10.3367/ufnr.0172.200206b.06475. Hoover W. G., Ross M., Johnson K. W., HendersonD., Barker J. A., Brown, B. C. Soft-sphere equationof state. The Journal of Chemical Physics, 1970;52(10):4931–4941. DOI: https://doi.org/10.1063/1.16727286. Cape J. N., Woodcock L. V. Glass transition in asoft-sphere model. The Journal of Chemical Physics,1980;72(2): 976–985. DOI: https://doi.org/10.1063/1.4392177. Franz S., Mezard M., Parisi G., Peliti L. Theresponse of glassy systems to random perturbations:A bridge between equilibrium and off-equilibrium.Journal of Statistical Physics. 1999;97(3–4): 459–488.DOI: https://doi.org/10.1023/A:10046029063328. Marc Mezard and Giorgio Parisi. Thermodynamicsof glasses: a first principles computation. J. of Phys.:Condens. Matter. 1999;11: A157–A165.9. Berthier L., Jacquin H., Zamponi F. Microscopictheory of the jamming transition of harmonic spheres.Physical Review E, 2011;84(5): 051103. DOI: https://doi.org/10.1103/PhysRevE.84.05110310. Berthier L., Biroli, G., Charbonneau P.,Corwin E. I., Franz S., Zamponi F. Gardner physics inamorphous solids and beyond. The Journal of ChemicalPhysics. 2019;151(1): 010901. DOI: https://doi.org/10.1063/1.5097175 11. Berthier L., Ozawa M., Scalliet C. Configurationalentropy of glass-forming liquids. The Journal ofChemical Physics. 2019;150(16): 160902. DOI: https://doi.org/10.1063/1.509196112. Bomont J. M., Pastore G. An alternative schemeto find glass state solutions using integral equationtheory for the pair structure. Molecular Physics.2015;113(17–18): 2770–2775. DOI: https://doi.org/10.1080/00268976.2015.103832513. Bomont J. M., Hansen J. P., Pastore G.Hypernetted-chain investigation of the random firstordertransition of a Lennard-Jones liquid to an idealglass. Physical Review E. 2015;92(4): 042316. DOI:https://doi.org/10.1103/PhysRevE.92.04231614. Bomont J. M., Pastore G., Hansen J. P.Coexistence of low and high overlap phases in asupercooled liquid: An integral equation investigation.The Journal of Chemical Physics. 2017;146(11): 114504.DOI: https://doi.org/10.1063/1.497849915. Bomont J. M., Hansen J. P., Pastore G. Revisitingthe replica theory of the liquid to ideal glass transition.The Journal of Chemical Physics. 2019;150(15): 154504.DOI: https://doi.org/10.1063/1.508881116. Cammarota C., Seoane B. First-principlescomputation of random-pinning glass transition, glasscooperative length scales, and numerical comparisons.Physical Review B. 2016;94(18): 180201. DOI: https://doi.org/10.1103/PhysRevB.94.18020117. Charbonneau P., Ikeda A., Parisi G., Zamponi F.Glass transition and random close packing above threedimensions. Physical Review Letters. 2011;107(18):185702. DOI: https://doi.org/10.1103/PhysRevLett.107.18570218. Ikeda A., Miyazaki K. Mode-coupling theory asa mean-field description of the glass transition.Physical Review Letters. 2010;104(25): 255704. DOI:https://doi.org/10.1103/PhysRevLett.104.25570419. McCowan D. Numerical study of long-timedynamics and ergodic-nonergodic transitions in densesimple fluids. Physical Review E. 2015;92(2): 022107.DOI: https://doi.org/10.1103/PhysRevE.92.02210720. Ohtsu H., Bennett T. D., Kojima T., Keen D. A.,Niwa Y., Kawano M. Amorphous–amorphous transitionin a porous coordination polymer. ChemicalCommunications. 2017;53(52): 7060–7063. DOI:https://doi.org/10.1039/C7CC03333H21. Schmid B., Schilling R. Glass transition of hardspheres in high dimensions. Physical Review E.2010;81(4): 041502. DOI: https://doi.org/10.1103/PhysRevE.81.04150222. Parisi G., Slanina, F. Toy model for the meanfieldtheory of hard-sphere liquids. Physical Review E.2000;62(5): 6554. DOI: https://doi.org/10.1103/Phys-RevE.62.655423. Parisi G., Zamponi F. The ideal glass transitionof hard spheres. The Journal of Chemical Physics.2005;123(14): 144501. DOI: https://doi.org/10.1063/1.204150724. Parisi G., Zamponi F. Amorphous packings ofhard spheres for large space dimension. Journal ofStatistical Mechanics: Theory and Experiment. 2006;03:P03017. DOI: https://doi.org/10.1088/1742-5468/2006/03/P0301725. Parisi G., Procaccia I., Shor C., Zylberg J. Effectiveforces in thermal amorphous solids with genericinteractions. Physical Review E. 2019;99(1): 011001. DOI:https://doi.org/10.1103/PhysRevE.99.01100126. Stevenson J. D., Wolynes P. G. Thermodynamic −kinetic correlations in supercooled liquids: a criticalsurvey of experimental data and predictions of therandom first-order transition theory of glasses. TheJournal of Physical Chemistry B. 2005;109(31): 15093–15097. DOI: https://doi.org/10.1021/jp052279h27. Xia X., Wolynes P. G. Fragilities of liquidspredicted from the random first order transition theoryof glasses. Proceedings of the National Academy ofSciences. 2000;97(7): 2990–2994. DOI: https://doi.org/10.1073/pnas.97.7.299028. Kobryn A. E., Gusarov S., Kovalenko A. A closurerelation to molecular theory of solvation formacromolecules. Journal of Physics: Condensed Matter.2016; 28 (40): 404003. DOI: https://doi.org/10.1088/0953-8984/28/40/40400329. Coluzzi B. , Parisi G. , Verrocchio P.Thermodynamical liquid-glass transition in a Lennard-Jones binary mixture. Physical Review Letters.2000;84(2): 306. DOI: https://doi.org/10.1103/PhysRevLett.84.30630. Sciortino F., Tartaglia P. Extension of thefluctuation-dissipation theorem to the physical agingof a model glass-forming liquid. Physical Review Letters.2001;86(1): 107. DOI: https://doi.org/10.1103/Phys-RevLett.86.10731. Sciortino, F. One liquid, two glasses. NatureMaterials. 2002;1(3): 145–146. DOI: https://doi.org/10.1038/nmat75232. Farr R. S., Groot R. D. Close packing density ofpolydisperse hard spheres. The Journal of ChemicalPhysics. 2009;131(24): 244104. DOI: https://doi.org/10.1063/1.327679933. Barrat J. L., Biben T., Bocquet, L. From Paris toLyon, and from simple to complex liquids: a view onJean-Pierre Hansen’s contribution. Molecular Physics.2015;113(17-18): 2378–2382. DOI: https://doi.org/10.1080/00268976.2015.103184334. Gaspard J. P. Structure of Melt and Liquid Alloys.In Handbook of Crystal Growth. Elsevier; 2015. 580 p.DOI: https://doi.org/10.1016/B978-0-444-56369-9.00009-535. Heyes D. M., Sigurgeirsson H. The Newtonianviscosity of concentrated stabilized dispersions:comparisons with the hard sphere fluid. Journal ofRheology. 2004;48(1): 223–248. DOI: https://doi.org/10.1122/1.163498636. Ninarello A., Berthier L., Coslovich D. Structureand dynamics of coupled viscous liquids. MolecularPhysics. 2015;113(17-18): 2707–2715. DOI: https://doi.org/10.1080/00268976.2015.103908937. Russel W. B., Wagner N. J., Mewis J. Divergencein the low shear viscosity for Brownian hard-spheredispersions: at random close packing or the glasstransition? Journal of Rheology. 2013;57(6): 1555–1567.DOI: https://doi.org/10.1122/1.482051538. Schaefer T. Fluid dynamics and viscosity instrongly correlated fluids. Annual Review of Nuclearand Particle Science. 2014;64: 125–148. DOI: https://doi.org/10.1146/annurev-nucl-102313-02543939. Matsuoka H. A macroscopic model thatconnects the molar excess entropy of a supercooledliquid near its glass transition temperature to itsviscosity. The Journal of Chemical Physics. 2012;137(20):204506. DOI: https://doi.org/10.1063/1.476734840. de Melo Marques F. A., Angelini R., Zaccarelli E.,Farago B., Ruta B., Ruocco, G., Ruzicka B. Structuraland microscopic relaxations in a colloidal glass. SoftMatter. 2015;11(3): 466–471. DOI: https://doi.org/10.1039/C4SM02010C41. Deutschländer S., Dillmann P., Maret G., KeimP. Kibble–Zurek mechanism in colloidal monolayers.Proceedings of the National Academy of Sciences.2015;112(22): 6925–6930. DOI: https://doi.org/10.1073/pnas.150076311242. Chang J., Lenhoff A. M., Sandler S. I.Determination of fluid–solid transitions in modelprotein solutions using the histogram reweightingmethod and expanded ensemble simulations. TheJournal of Chemical Physics. 2004;120(6): 3003–3014.DOI: https://doi.org/10.1063/1.163837743. Gurikov P., Smirnova I. Amorphization of drugsby adsorptive precipitation from supercriticalsolutions: a review. The Journal of Supercritical Fluids.2018;132: 105–125. DOI: https://doi.org/10.1016/j.supflu.2017.03.00544. Baghel S., Cathcart H., O’Reilly N. J. Polymericamorphoussolid dispersions: areviewofamorphization, crystallization, stabilization, solidstatecharacterization, and aqueous solubilization ofbiopharmaceutical classification system class II drugs.Journal of Pharmaceutical Sciences. 2016;105(9):2527–2544. DOI: https://doi.org/10.1016/j.xphs.2015.10.00845. Kalyuzhnyi Y. V., Hlushak S. P. Phase coexistencein polydisperse multi-Yukawa hard-sphere fluid: hightemperature approximation. The Journal of ChemicalPhysics. 2006;125(3): 034501. DOI: https://doi.org/10.1063/1.221241946. Mondal C., Sengupta S. Polymorphism,thermodynamic anomalies, and network formation inan atomistic model with two internal states. PhysicalReview E. 2011;84(5): 051503. DOI: https://doi.org/10.1103/PhysRevE.84.05150347. Bonn D., Denn M. M., Berthier L., Divoux T.,Manneville S. Yield stress materials in soft condensedmatter. Reviews of Modern Physics. 2017;89(3): 035005.DOI: https://doi.org/10.1103/RevModPhys.89.03500548. Tanaka H. Two-order-parameter model of theliquid–glass transition. I. Relation between glasstransition and crystallization. Journal of Non-Crystalline Solids. 2005;351(43-45): 3371–3384. DOI:https://doi.org/10.1016/j.jnoncrysol.2005.09.00849. Balesku R. Ravnovesnaya i neravnovesnayastatisticheskaya mekhanika [Equilibrium and nonequilibriumstatistical mechanics]. Moscow: Mir Publ.;1978. vol. 1. 404 c. (In Russ.)50. Chari S., Inguva R., Murthy K. P. N. A newtruncation scheme for BBGKY hierarchy: conservationof energy and time reversibility. arXiv preprintarXiv: 1608. 02338. DOI: https://arxiv.org/abs/1608.0233851. Gallagher I., Saint-Raymond L., Texier B. FromNewton to Boltzmann: hard spheres and short-rangepotentials. European Mathematical Society.arXiv:1208.5753. DOI: https://arxiv.org/abs/1208.575352. Rudzinski J. F., Noid W. G. A generalized-Yvon-Born-Green method for coarse-grained modeling. TheEuropean Physical Journal Special Topics. 224(12),2193–2216. DOI: https://doi.org/10.1140/epjst/e2015-02408-953. Franz B., Taylor-King J. P., Yates C., Erban R.Hard-sphere interactions in velocity-jump models.Physical Review E. 2016;94(1): 012129. DOI: https://doi.org/10.1103/PhysRevE.94.01212954. Gerasimenko V., Gapyak I. Low-Densityasymptotic behavior of observables of hard spherefluids. Advances in Mathematical Physics. 2018:6252919. DOI: https://doi.org/10.1155/2018/625291955. Lue L. Collision statistics, thermodynamics,and transport coefficients of hard hyperspheres inthree, four, and five dimensions. The Journal ofChemical Physics. 2005;122(4): 044513. DOI: https://doi.org/10.1063/1.183449856. Cigala G., Costa D., Bomont J. M., Caccamo C.Aggregate formation in a model fluid with microscopicpiecewise-continuous competing interactions.Molecular Physics. 2015;113(17–18): 2583–2592.DOI: https://doi.org/10.1080/00268976.2015.107800657. Jadrich R., Schweizer K. S. Equilibrium theoryof the hard sphere fluid and glasses in the metastableregime up to jamming. I. Thermodynamics. The Journalof Chemical Physics. 2013;139(5): 054501. DOI: https://doi.org/10.1063/1.481627558. Mondal A., Premkumar L., Das S. P. Dependenceof the configurational entropy on amorphousstructures of a hard-sphere fluid. Physical Review E.2017;96(1): 012124. DOI: https://doi.org/10.1103/PhysRevE.96.01212459. Sasai M. Energy landscape picture ofsupercooled liquids: application of a generalizedrandom energy model. The Journal of Chemical Physics.2003;118(23): 10651–10662. DOI: https://doi.org/10.1063/1.157478160. Sastry S. Liquid limits: Glass transition andliquid-gas spinodal boundaries of metastable liquids.Physical Review Letters. 2000;85(3): 590. DOI: https://doi.org/10.1103/PhysRevLett.85.59061. Uche O. U., Stillinger F. H., Torquato S. On therealizability of pair correlation functions. Physica A:Statistical Mechanics and its Applications. 2006;360(1):21–36. DOI: https://doi.org/10.1016/j.physa.2005.03.05862. Bi D., Henkes S., Daniels K. E., Chakraborty B.The statistical physics of athermal materials. Annu.Rev. Condens. Matter Phys. 2015;6(1): 63–83. DOI:https://doi.org/10.1146/annurev-conmatphys-031214-01433663. Bishop M., Masters A., Vlasov A. Y. Higher virialcoefficients of four and five dimensional hardhyperspheres. The Journal of Chemical Physics.2004;121(14): 6884–6886. DOI: https://doi.org/10.1063/1.177757464. Sliusarenko O. Y., Chechkin A. V., SlyusarenkoY. V. The Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy and Fokker-Planck equation for manybodydissipative randomly driven systems. Journal ofMathematical Physics. 2015;56(4): 043302. DOI:https://doi.org/10.1063/1.491861265. Tang Y. A new grand canonical ensemblemethod to calculate first-order phase transitions. TheJournal of chemical physics. 2011;134(22): 224508. DOI:https://doi.org/10.1063/1.359904866. Tsednee T., Luchko T. Closure for the Ornstein-Zernike equation with pressure and free energyconsistency. Physical Review E. 2019;99(3): 032130.DOI: https://doi.org/10.1103/PhysRevE.99.03213067. Maimbourg T., Kurchan J., Zamponi, F. Solutionof the dynamics of liquids in the large-dimensionallimit. Physical review letters. 2016;116(1): 015902. DOI:https://doi.org/10.1103/PhysRevLett.116.01590268. Mari, R., & Kurchan, J. Dynamical transition ofglasses: from exact to approximate. The Journal ofChemical Physics. 2011;135(12): 124504. DOI: https://doi.org/10.1063/1.362680269. Frisch H. L., Percus J. K. High dimensionalityas an organizing device for classical fluids. PhysicalReview E. 1999;60(3): 2942. DOI: https://doi.org/10.1103/PhysRevE.60.294270. Finken R., Schmidt M., Löwen H. Freezingtransition of hard hyperspheres. Physical Review E.2001;65(1): 016108. DOI: https://doi.org/10.1103/PhysRevE.65.01610871. Torquato S., Uche O. U., Stillinger F. H. Randomsequential addition of hard spheres in high Euclideandimensions. Physical Review E. 2006;74(6): 061308.DOI: https://doi.org/10.1103/PhysRevE.74.06130872. Martynov G. A. Fundamental theory of liquids;method of distribution functions. Bristol: Adam Hilger;1992, 470 p.73. Vompe A. G., Martynov G. A. The self-consistentstatistical theory of condensation. The Journal ofChemical Physics. 1997;106(14): 6095–6101. DOI:https://doi.org/10.1063/1.47327274. Krokston K. Fizika zhidkogo sostoyaniya.Statisticheskoe vvedenie [Physics of the liquid state.Statistical introduction]. Moscow: Mir Publ.; 1978.400 p. (In Russ.)75. Rogers F. J., Young D. A. New, thermodynamicallyconsistent, integral equation for simple fluids. PhysicalReview A. 1984;30(2): 999. DOI: https://doi.org/10.1103/PhysRevA.30.99976. Wertheim M. S. Exact solution of the Percus–Yevick integral equation for hard spheres Phys. Rev.Letters. 1963;10(8): 321–323. DOI: https://doi.org/10.1103/PhysRevLett.10.32177. Tikhonov D. A., Kiselyov O. E., Martynov G. A.,Sarkisov G. N. Singlet integral equation in thestatistical theory of surface phenomena in liquids. J.of Mol. Liquids. 1999;82(1–2): 3– 17. DOI: https://doi.org/10.1016/S0167-7322(99)00037-978. Agrafonov Yu., Petrushin I. Two-particledistribution function of a non-ideal molecular systemnear a hard surface. Physics Procedia. 2015;71. 364–368. DOI: https://doi.org/10.1016/j.phpro.2015.08.35379. Agrafonov Yu., Petrushin I. Close order in themolecular system near hard surface. Journal of Physics:Conference Series. 2016;747: 012024. DOI: https://doi.org/10.1088/1742-6596/747/1/01202480. He Y., Rice S. A., Xu X. Analytic solution of theOrnstein-Zernike relation for inhomogeneous liquids.The Journal of Chemical Physics. 2016;145(23): 234508.DOI: https://doi.org/10.1063/1.497202081. Agrafonov Y. V., Petrushin I. S. Usingmolecular distribution functions to calculate thestructural properties of amorphous solids. Bulletinof the Russian Academy of Sciences: Physics. 2020;84:783–787. DOI: https://doi.org/10.3103/S106287382007003582. Bertheir L., Ediger M. D. How to “measure” astructural relaxation time that is too long to bemeasured? arXiv:2005.06520v1. DOI: https://arxiv.org/abs/2005.0652083. Karmakar S., Dasgupta C., Sastry S. Lengthscales in glass-forming liquids and related systems: areview. Reports on Progress in Physics. 2015;79(1):016601. DOI: https://doi.org/10.1088/0034-4885/79/1/01660184. De Michele C., Sciortino F., Coniglio A. Scalingin soft spheres: fragility invariance on the repulsivepotential softness. Journal of Physics: CondensedMatter. 2004;16(45): L489. DOI: https://doi.org/10.1088/0953-8984/16/45/L0185. Niblett S. P., de Souza V. K., Jack R. L., Wales D. J.Effects of random pinning on the potential energylandscape of a supercooled liquid. The Journal ofChemical Physics. 2018;149(11): 114503. DOI: https://doi.org/10.1063/1.504214086. Wolynes P. G., Lubchenko V. Structural glassesand supercooled liquids: Theory, experiment, andapplications. New York: John Wiley & Sons; 2012. 404p. DOI: https://doi.org/10.1002/978111820247087. Jack R. L., Garrahan J. P. Phase transition forquenched coupled replicas in a plaquette spin modelof glasses. Physical Review Letters. 2016;116(5): 055702.DOI: https://doi.org/10.1103/PhysRevLett.116.05570288. Habasaki J., Ueda A. Molecular dynamics studyof one-component soft-core system: thermodynamicproperties in the supercooled liquid and glassy states.The Journal of Chemical Physics. 2013;138(14): 144503.DOI: https://doi.org/10.1063/1.479988089. Bomont J. M., Hansen J. P., Pastore G. Aninvestigation of the liquid to glass transition usingintegral equations for the pair structure of coupledreplicae. J. Chem. Phys. 2014;141(17): 174505. DOI:https://doi.org/10.1063/1.490077490. Parisi G., Urbani P., Zamponi F. Theory of SimpleGlasses: Exact Solutions in Infinite Dimensions.Cambridge: Cambridge University Press; 2020. 324 p.DOI: https://doi.org/10.1017/978110812049491. Robles M., López de Haro M., Santos A., BravoYuste S. Is there a glass transition for dense hardspheresystems? The Journal of Chemical Physics.1998;108(3): 1290–1291. DOI: https://doi.org/10.1063/1.47549992. Grigera T. S., Martín-Mayor V., Parisi G.,Verrocchio P. Asymptotic aging in structural glasses.Physical Review B, 2004;70(1): 014202. DOI: https://doi.org/10.1103/PhysRevB.70.01420293. Vega C., Abascal J. L., McBride C., Bresme F.The fluid–solid equilibrium for a charged hard spheremodel revisited. The Journal of Chemical Physics.2003; 119 (2): 964–971. DOI: https://doi.org/10.1063/1.157637494. Kaneyoshi T. Surface amorphization in atransverse Ising nanowire; effects of a transverse field.Physica B: Condensed Matter. 2017;513: 87–94. DOI:https://doi.org/10.1016/j.physb.2017.03.01595. Paganini I. E., Davidchack R. L., Laird B. B.,Urrutia I. Properties of the hard-sphere fluid at a planarwall using virial series and molecular-dynamicssimulation. The Journal of Chemical Physics. 2018;149(1):014704. DOI: https://doi.org/10.1063/1.502533296. Properzi L., Santoro M., Minicucci M., Iesari F.,Ciambezi M., Nataf L., Di Cicco A. Structural evolutionmechanisms of amorphous and liquid As2 Se3 at highpressures. Physical Review B. 2016;93(21): 214205. DOI:https://doi.org/10.1103/PhysRevB.93.21420597. Sesé L. M. Computational study of the meltingfreezingtransition in the quantum hard-sphere systemfor intermediate densities. I. Thermodynamic results.The Journal of Chemical Physics. 2007;126(16): 164508.DOI: https://doi.org/10.1063/1.271852398. Shetty R., Escobedo F. A. On the application ofvirtual Gibbs ensembles to the direct simulation offluid–fluid and solid–fluid phase coexistence. TheJournal of Chemical Physics. 2002;116(18): 7957–7966.DOI: https://doi.org/10.1063/1.1467899
Style APA, Harvard, Vancouver, ISO itp.
5

Vikas i Chayawan. "Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum–mechanical descriptors". Chemosphere 95 (styczeń 2014): 448–54. http://dx.doi.org/10.1016/j.chemosphere.2013.09.093.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shi, L., i J. L. Skinner. "Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih". Journal of Chemical Physics 143, nr 1 (7.07.2015): 014503. http://dx.doi.org/10.1063/1.4923387.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nowok, Andrzej, Wioleta Cieślik, Joanna Grelska, Karolina Jurkiewicz, Natalina Makieieva, Teobald Kupka, José Alemán, Robert Musioł i Sebastian Pawlus. "Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases". International Journal of Molecular Sciences 23, nr 9 (6.05.2022): 5185. http://dx.doi.org/10.3390/ijms23095185.

Pełny tekst źródła
Streszczenie:
Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure–property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient- and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient- and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (Tg) and its pressure coefficient (dTg/dp). We also show that, surprisingly, despite the presence of intra- and intermolecular hydrogen bonds, van der Waals and dipole–dipole interactions are the main forces governing molecular dynamics and dielectric properties of glycine imino esters.
Style APA, Harvard, Vancouver, ISO itp.
8

Das, Ankita, Eran Rabani, Kunimasa Miyazaki i Upendra Harbola. "Structural relaxation in quantum supercooled liquids: A mode-coupling approach". Journal of Chemical Physics 154, nr 1 (7.01.2021): 014502. http://dx.doi.org/10.1063/5.0032085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kühnel, M., J. M. Fernández, F. Tramonto, G. Tejeda, E. Moreno, A. Kalinin, M. Nava, D. E. Galli, S. Montero i R. E. Grisenti. "Mixing effects in the crystallization of supercooled quantum binary liquids". Journal of Chemical Physics 143, nr 6 (14.08.2015): 064504. http://dx.doi.org/10.1063/1.4928280.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rabani, Eran, i David R. Reichman. "QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids". Annual Review of Physical Chemistry 56, nr 1 (5.05.2005): 157–85. http://dx.doi.org/10.1146/annurev.physchem.56.092503.141138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "QUANTUM SUPERCOOLED LIQUID"

1

TRAMONTO, FILIPPO. "MICROSCOPIC STUDIES OF STATIC AND DYNAMIC PROPERTIES IN QUANTUM LIQUIDS AND GASES". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/260418.

Pełny tekst źródła
Streszczenie:
In this thesis I present studies of a number of quantum many-body Bose systems via Quantum Monte Carlo methods. We investigated the dynamic structure factor of a hard-sphere Bose system simulated at T=0 at different densities, from the dilute to the strongly interacting regimes. By increasing the density we observed the spectrum evolves from the weakly interacting Bogoliubov to a phonon-maxon-roton dispersion, but also the emergence of a broad multi-quasiparticle component. For a system with sphere radius and density corresponding to superfluid 4He at equilibrium, we found good agreement with the spectrum in the roton region. In another work, a liquid of distinguishable 4He atoms near freezing at T=1 K was studied to compute the equation of state and static density response function. The results of this study have been used to improve the description of the superfluid-to-solid transition within the Density Functional Theory. Measurements of crystallization kinetics in supercooled liquid p-H2--o-D2 mixtures showed a slowdown with respect to the pure counterparts. In order to contribute to the interpretation of these results we simulated these metastable mixtures. We found differences in the quantum delocalization of the two isotopic molecules, which result in different effective sizes. We characterized also the differences in the local order around the molecules of each species. These results revealed that the observed slowdown is due to purely quantum effects. Finally, in a QMC study of ion Ar+ doped 4He nanodroplets at T=1 K, we computed density profiles, energies, and investigated local order around the Ar+ ion. We found stable solid structures around the ion composed of three solvation shells having the shape of platonic solids: an icosahedron, a dodecahedron, and, again, an icosahedron, with 12, 20, and 12 4He atoms, going from the inner to the outer shell respectively. These results confirmed the interpretation of experimental measurements of the abundances of Ar+@4He nanodroplets.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii