Artykuły w czasopismach na temat „Quantum stark effect”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum stark effect.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum stark effect”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Marie, X., J. Barrau, B. Brousseau, Th Amand, M. Brousseau, N. Lauret, C. Starck i A. Peralès. "Stark effect in quantum-wells". Superlattices and Microstructures 10, nr 1 (styczeń 1991): 95–98. http://dx.doi.org/10.1016/0749-6036(91)90155-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, Y., H. S. Djie i B. S. Ooi. "Quantum-confined Stark effect in interdiffused quantum dots". Applied Physics Letters 89, nr 15 (9.10.2006): 151104. http://dx.doi.org/10.1063/1.2358296.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bonilla, L. L., V. A. Kochelap i C. A. Velasco. "Patterns under quantum confined Stark effect". Journal of Physics: Condensed Matter 10, nr 31 (10.08.1998): L539—L546. http://dx.doi.org/10.1088/0953-8984/10/31/003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

JAZIRI, S., G. BASTARD i R. BENNACEUR. "Stark effect in parabolic quantum dot". Le Journal de Physique IV 03, nr C5 (październik 1993): 367–72. http://dx.doi.org/10.1051/jp4:1993577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pokutnyi, S. I., L. Jacak, J. Misiewicz, W. Salejda i G. G. Zegrya. "Stark effect in semiconductor quantum dots". Journal of Applied Physics 96, nr 2 (15.07.2004): 1115–19. http://dx.doi.org/10.1063/1.1759791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior i B. C. Cavenett. "quantum confined Stark effect waveguide modulator". Journal of Crystal Growth 159, nr 1-4 (luty 1996): 902–5. http://dx.doi.org/10.1016/0022-0248(95)00796-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio i V. R. Velasco. "Stark effect in diffused quantum wells". Superlattices and Microstructures 26, nr 5 (listopad 1999): 325–32. http://dx.doi.org/10.1006/spmi.1999.0786.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gibb, K., C. Lacelle, Q. Sun, E. Fortin i A. P. Roth. "The quantum-confined Stark effect in shallow quantum wells". Canadian Journal of Physics 69, nr 3-4 (1.03.1991): 447–50. http://dx.doi.org/10.1139/p91-073.

Pełny tekst źródła
Streszczenie:
We have investigated the quantum-confined Stark effect for a series of four InGaAs–GaAs single quantum wells using photocurrent spectroscopy. All four samples reveal quadratic Stark shifts for the lowest electron-to-heavy-hole transition at weak electric fields. The field dependence becomes subquadratic at large applied fields. The field dependent reduction of the exciton binding energy is measured and is on the order of a millielectron volt for applied electric fields approaching 80 kV cm−1.
Style APA, Harvard, Vancouver, ISO itp.
9

Qiu, Ying Ning, Wei Sheng Lu i Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures". Advanced Materials Research 773 (wrzesień 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.

Pełny tekst źródła
Streszczenie:
The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.
Style APA, Harvard, Vancouver, ISO itp.
10

Morita, Masahiko, Katsuyuki Goto i Takeo Suzuki. "Quantum-Confined Stark Effect in Stepped-Potential Quantum Wells". Japanese Journal of Applied Physics 29, Part 2, No. 9 (20.09.1990): L1663—L1665. http://dx.doi.org/10.1143/jjap.29.l1663.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Hiroshima, Tohya, i Kenichi Nishi. "Quantum‐confined Stark effect in graded‐gap quantum wells". Journal of Applied Physics 62, nr 8 (15.10.1987): 3360–65. http://dx.doi.org/10.1063/1.339298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Fröhlich, D., R. Wille, W. Schlapp i G. Weimann. "Optical quantum-confined Stark effect in GaAs quantum wells". Physical Review Letters 59, nr 15 (12.10.1987): 1748–51. http://dx.doi.org/10.1103/physrevlett.59.1748.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Pokutnyi, Sergey I. "Size Quantization Stark Effect in Quantum Dots". Optics 3, nr 6 (2014): 57. http://dx.doi.org/10.11648/j.optics.s.2014030601.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Jana, Raj K., i Debdeep Jena. "Stark-effect scattering in rough quantum wells". Applied Physics Letters 99, nr 1 (4.07.2011): 012104. http://dx.doi.org/10.1063/1.3607485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Wang, S. Y., Y. Kawakami, J. Simpson, H. Stewart, K. A. Prior i B. C. Cavenett. "ZnSe‐ZnCdSe quantum confined Stark effect modulators". Applied Physics Letters 62, nr 15 (12.04.1993): 1715–17. http://dx.doi.org/10.1063/1.109583.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Andrews, S. R., C. M. Murray, R. A. Davies i T. M. Kerr. "Stark effect in strongly coupled quantum wells". Physical Review B 37, nr 14 (15.05.1988): 8198–204. http://dx.doi.org/10.1103/physrevb.37.8198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

MYSYROWICZ, A., i D. HULIN. "OPTICAL STARK EFFECT IN GaAs QUANTUM WELLS". Le Journal de Physique Colloques 49, nr C2 (czerwiec 1988): C2–175—C2–177. http://dx.doi.org/10.1051/jphyscol:1988241.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ekinov, A. I., Al L. Efros, T. V. Shubina i A. P. Skvortsov. "Quantum-size stark effect in semiconductor microcrystals". Journal of Luminescence 46, nr 2 (marzec 1990): 97–100. http://dx.doi.org/10.1016/0022-2313(90)90011-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kawakami, Y., S. Y. Wang, J. Simpson, I. Hauksson, S. J. A. Adams, H. Stewart, B. C. Cavenett i K. A. Prior. "II–VI quantum-confined Stark effect modulators". Physica B: Condensed Matter 185, nr 1-4 (kwiecień 1993): 496–99. http://dx.doi.org/10.1016/0921-4526(93)90285-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Rinaldi, Ross, Milena DeGiorgi, Massimo DeVittorio, Angelo Melcarne, Paolo Visconti, Roberto Cingolani, Harri Lipsanen, Markku Sopanen, T. Drufva i Jukka Tulkki. "Longitudinal Stark Effect in Parabolic Quantum Dots". Japanese Journal of Applied Physics 40, Part 1, No. 3B (30.03.2001): 2002–5. http://dx.doi.org/10.1143/jjap.40.2002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Rossmann, H., A. Schülzgen, F. Henneberger i M. Müller. "Quantum Confined DC Stark Effect in Microcrystallites". physica status solidi (b) 159, nr 1 (1.05.1990): 287–90. http://dx.doi.org/10.1002/pssb.2221590133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kim, S. J., Y. T. Oh, S. K. Kim, T. W. Kang i T. W. Kim. "Stark effect and Stark‐ladder effect in Al0.4Ga0.6As/GaAs asymmetric coupled multiple quantum wells". Journal of Applied Physics 77, nr 6 (15.03.1995): 2486–94. http://dx.doi.org/10.1063/1.358777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Short, S. W., S. H. Xin, A. Yin, H. Luo, M. Dobrowolska i J. K. Furdyna. "Quantum‐confined Stark effect in ZnSe/Zn1−xCdxSe quantum wells". Applied Physics Letters 67, nr 4 (24.07.1995): 503–5. http://dx.doi.org/10.1063/1.114550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ishikawa, Takuya, Shinji Nishimura i Kunio Tada. "Quantum-Confined Stark Effect in a Parabolic-Potential Quantum Well". Japanese Journal of Applied Physics 29, Part 1, No. 8 (20.08.1990): 1466–73. http://dx.doi.org/10.1143/jjap.29.1466.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Li, E. Herbert, K. S. Chan, Bernard L. Weiss i Joseph Micallef. "Quantum‐confined Stark effect in interdiffused AlGaAs/GaAs quantum well". Applied Physics Letters 63, nr 4 (26.07.1993): 533–35. http://dx.doi.org/10.1063/1.109996.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Héroux, J. B., X. Yang i W. I. Wang. "Quantum confined Stark effect in GaInNAs∕GaAs multiple quantum wells". IEE Proceedings - Optoelectronics 150, nr 1 (2003): 92. http://dx.doi.org/10.1049/ip-opt:20030042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Empedocles, S. A. "Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots". Science 278, nr 5346 (19.12.1997): 2114–17. http://dx.doi.org/10.1126/science.278.5346.2114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Wakita, Koichi, Isamu Kotaka, Masashi Nakao i Hiromitsu Asai. "Large Quantum-Confined Stark-Effect in Quaternary InGaAlAs Quantum Wells". Japanese Journal of Applied Physics 28, Part 1, No. 9 (20.09.1989): 1732–33. http://dx.doi.org/10.1143/jjap.28.1732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Chen, W. Q., S. M. Wang, T. G. Andersson i J. Thordson. "Inverse parabolic quantum well and its quantum‐confined Stark effect". Journal of Applied Physics 74, nr 10 (15.11.1993): 6247–50. http://dx.doi.org/10.1063/1.355167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Hallford, Randal, i Preet Sharma. "Non-Hermitian Hamiltonian Treatment of Stark Effect in Quantum Mechanics". Emerging Science Journal 4, nr 6 (1.12.2020): 427–35. http://dx.doi.org/10.28991/esj-2020-01242.

Pełny tekst źródła
Streszczenie:
The Non-Hermitian aspect of Quantum Mechanics has been of great interest recently. There have been numerous studies on non-Hermitian Hamiltonians written for natural processes. Some studies have even expressed the hydrogen atom in a non-Hermitian basis. In this paper the principles of non-Hermitian quantum mechanics is applied to both the time independent perturbation theory and to the time dependant theory to calculate the Stark effect. The principles of spherical harmonics has also been used to describe the development in the non-Hermitian case. Finally, the non-Hermitian aspect has been introduced to the well known Stark effect in quantum mechanics to find a condition in which the Stark effect will still be true even if a non-Hermitian Hamiltonian is used. This study completes the understanding at a fundamental level to understand the well known Stark effect. Doi: 10.28991/esj-2020-01242 Full Text: PDF
Style APA, Harvard, Vancouver, ISO itp.
31

Anwar, S. Jamal, M. Ramzan, M. Usman i M. Khalid Khan. "Entanglement Dynamics of Three and Four Level Atomic System under Stark Effect and Kerr-Like Medium". Quantum Reports 1, nr 1 (28.05.2019): 23–36. http://dx.doi.org/10.3390/quantum1010004.

Pełny tekst źródła
Streszczenie:
We investigated numerically the dynamics of quantum Fisher information (QFI) and entanglement for three- and four-level atomic systems interacting with a coherent field under the effect of Stark shift and Kerr medium. It was observed that the Stark shift and Kerr-like medium play a prominent role during the time evolution of the quantum systems. The non-linear Kerr medium has a stronger effect on the dynamics of QFI as compared to the quantum entanglement (QE). QFI is heavily suppressed by increasing the value of Kerr parameter. This behavior was found comparable in the cases of three- and four-level atomic systems coupled with a non-linear Kerr medium. However, QFI and quantum entanglement (QE) maintain their periodic nature under atomic motion. On the other hand, the local maximum value of QFI and von Neumann entropy (VNE) decrease gradually under the Stark effect. Moreover, no prominent difference in the behavior of QFI and QE was observed for three- and four-level atoms while increasing the value of Stark parameter. However, three- and four-level atomic systems were found equally prone to the non-linear Kerr medium and Stark effect. Furthermore, three- and four-level atomic systems were found fully prone to the Kerr-like medium and Stark effect.
Style APA, Harvard, Vancouver, ISO itp.
32

Sakimoto, K. "Multichannel quantum-defect theory of the Stark effect". Journal of Physics B: Atomic and Molecular Physics 19, nr 19 (14.10.1986): 3011–25. http://dx.doi.org/10.1088/0022-3700/19/19/015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kulakci, Mustafa, Ugur Serincan, Rasit Turan i Terje G. Finstad. "The quantum confined Stark effect in silicon nanocrystals". Nanotechnology 19, nr 45 (8.10.2008): 455403. http://dx.doi.org/10.1088/0957-4484/19/45/455403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior i B. C. Cavenett. "II–VI quantum confined Stark effect waveguide modulators". Applied Physics Letters 68, nr 7 (12.02.1996): 946–48. http://dx.doi.org/10.1063/1.116107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Díaz-Fernández, A., i F. Domínguez-Adame. "Quantum-confined Stark effect in band-inverted junctions". Physica E: Low-dimensional Systems and Nanostructures 93 (wrzesień 2017): 230–33. http://dx.doi.org/10.1016/j.physe.2017.06.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Jianping, Peng, W. S. LI, Gu Shiwei i Y. Y. YEUNG. "Stark Effect of Polarons in Parabolic Quantum Wells". Communications in Theoretical Physics 29, nr 3 (30.04.1998): 329–36. http://dx.doi.org/10.1088/0253-6102/29/3/329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Hildebrandt, J. "High-frequency Stark effect and two-quantum transitions". Journal of Physics B: Atomic, Molecular and Optical Physics 40, nr 11 (24.05.2007): 2121–33. http://dx.doi.org/10.1088/0953-4075/40/11/014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Reyes-Esqueda, Jorge-Alejandro, Carlos I. Mendoza, Marcelo del Castillo-Mussot i Gerardo J. Vázquez. "Stark effect in a wedge-shaped quantum box". Physica E: Low-dimensional Systems and Nanostructures 28, nr 4 (wrzesień 2005): 365–73. http://dx.doi.org/10.1016/j.physe.2005.04.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Qu, Fanyao, i P. C. Morais. "The optical Stark effect in semiconductor quantum wires". Physics Letters A 310, nr 5-6 (kwiecień 2003): 460–64. http://dx.doi.org/10.1016/s0375-9601(03)00381-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Rolnik, S., i J. Adamowski. "Stark Effect for Donors in Double Quantum Wells". Acta Physica Polonica A 88, nr 5 (listopad 1995): 893–96. http://dx.doi.org/10.12693/aphyspola.88.893.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Robinson, Paul, i Hans Maassen. "Quantum stochastic calculus and the dynamical stark effect". Reports on Mathematical Physics 30, nr 2 (październik 1991): 185–203. http://dx.doi.org/10.1016/0034-4877(91)90024-h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Jae-Hyun Ryou, P. D. Yoder, Jianping Liu, Z. Lochner, Hyunsoo Kim, Suk Choi, Hee Jin Kim i R. D. Dupuis. "Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells". IEEE Journal of Selected Topics in Quantum Electronics 15, nr 4 (lipiec 2009): 1080–91. http://dx.doi.org/10.1109/jstqe.2009.2014170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Rong, Yiwen, Yangsi Ge, Yijie Huo, Marco Fiorentino, Michael R. T. Tan, Theodore I. Kamins, Tomasz J. Ochalski, Guillaume Huyet i James S. Harris Jr. "Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si". IEEE Journal of Selected Topics in Quantum Electronics 16, nr 1 (styczeń 2010): 85–92. http://dx.doi.org/10.1109/jstqe.2009.2031502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Arakawa, T., Y. Kato, F. Sogawa i Y. Arakawa. "Photoluminescence studies of GaAs quantum wires with quantum confined Stark effect". Applied Physics Letters 70, nr 5 (3.02.1997): 646–48. http://dx.doi.org/10.1063/1.118295.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chaisakul, Papichaya, Delphine Marris-Morini, Giovanni Isella, Daniel Chrastina, Xavier Le Roux, Eleonora Gatti, Samson Edmond, Johann Osmond, Eric Cassan i Laurent Vivien. "Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures". Optics Letters 35, nr 17 (24.08.2010): 2913. http://dx.doi.org/10.1364/ol.35.002913.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Drabinska, A., K. Pakula, J. M. Baranowski i A. Wysmolek. "Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells". Journal of Physics: Conference Series 253 (1.11.2010): 012009. http://dx.doi.org/10.1088/1742-6596/253/1/012009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wang, Zhi-Bing, Hui-Chao Zhang i Jia-Yu Zhang. "Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots". Chinese Physics Letters 27, nr 12 (grudzień 2010): 127803. http://dx.doi.org/10.1088/0256-307x/27/12/127803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Gurioli, M., S. Sanguinetti i M. Henini. "Dynamic quantum-confined stark effect in self-assembled InAs quantum dots". Applied Physics Letters 78, nr 7 (12.02.2001): 931–33. http://dx.doi.org/10.1063/1.1348305.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Tobin, Mary S., i John D. Bruno. "Quantum-confined Stark effect modulator based on multiple triple-quantum wells". Journal of Applied Physics 89, nr 3 (2001): 1885. http://dx.doi.org/10.1063/1.1338517.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Jin-Long, Liu, Li Shu-Shen, Niu Zhi-Chuan, Yang Fu-Hua i Feng Song-Lin. "Quantum-Confined Stark Effect of Vertically Stacked Self-Assembled Quantum Discs". Chinese Physics Letters 20, nr 8 (30.07.2003): 1336–39. http://dx.doi.org/10.1088/0256-307x/20/8/345.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii