Gotowa bibliografia na temat „Quantum point contacts”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum point contacts”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Quantum point contacts"

1

van Houten, Henk, i Carlo Beenakker. "Quantum Point Contacts". Physics Today 49, nr 7 (lipiec 1996): 22–27. http://dx.doi.org/10.1063/1.881503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bretheau, L., Ç. Girit, L. Tosi, M. Goffman, P. Joyez, H. Pothier, D. Esteve i C. Urbina. "Superconducting quantum point contacts". Comptes Rendus Physique 13, nr 1 (styczeń 2012): 89–100. http://dx.doi.org/10.1016/j.crhy.2011.12.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Grambow, P., J. Nieder, D. Heitmann, K. von Klitzing i K. Ploog. "Quantum point contacts prepared by optical contact lithography". Semiconductor Science and Technology 6, nr 12 (1.12.1991): 1178–80. http://dx.doi.org/10.1088/0268-1242/6/12/015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rössler, C., M. Herz, M. Bichler i S. Ludwig. "Freely suspended quantum point contacts". Solid State Communications 150, nr 17-18 (maj 2010): 861–64. http://dx.doi.org/10.1016/j.ssc.2010.02.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hu, Qing. "Photon‐assisted quantum transport in quantum point contacts". Applied Physics Letters 62, nr 8 (22.02.1993): 837–39. http://dx.doi.org/10.1063/1.108567.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Katsumoto, Shingo. "New Tricks in Quantum Point Contacts". JPSJ News and Comments 2 (14.01.2005): 06. http://dx.doi.org/10.7566/jpsjnc.2.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ando, T. "Quantum point contacts in magnetic fields". Physical Review B 44, nr 15 (15.10.1991): 8017–27. http://dx.doi.org/10.1103/physrevb.44.8017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Takagaki, Y., i D. K. Ferry. "Tunneling spectroscopy of quantum point contacts". Physical Review B 45, nr 20 (15.05.1992): 12152–55. http://dx.doi.org/10.1103/physrevb.45.12152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Takagaki, Y., i D. K. Ferry. "Double quantum point contacts in series". Physical Review B 45, nr 23 (15.06.1992): 13494–98. http://dx.doi.org/10.1103/physrevb.45.13494.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Kouwenhoven, L. P., B. J. van Wees, C. J. P. M. Harmans, J. G. Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon i J. J. Harris. "Nonlinear conductance of quantum point contacts". Physical Review B 39, nr 11 (15.04.1989): 8040–43. http://dx.doi.org/10.1103/physrevb.39.8040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Quantum point contacts"

1

Ren, Yuan. "Spin effects in quantum point contacts". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/37736.

Pełny tekst źródła
Streszczenie:
Quantum point contacts (QPCs) are narrow constrictions between large reservoirs of two-dimensional electron gas, with conductance quantized in units of G=2e²/h at zero magnetic field. Despite decades of investigation, some conductance features of QPCs remain mysterious, such as an extra conductance plateau at 0.7(2e²/h) (0.7 structure) and a zero-bias peak (ZBP) in nonlinear conductance. In this thesis, we present experimental studies of transport anomalies in QPCs, aiming at shedding more light on these features. Conductance measurements are performed for ZBPs in a much wider range than in most previous work, focused especially on the low- and high-conductance regimes. The Kondo model and a model of subband motion are compared with experimental results, but both of them fall short of explaining the data. The subband-motion model is not spin-dependent, so it conflicts with the spin-related nature of ZBPs as confirmed by measurements of nuclear spin polarization in QPCs in an in-plane magnetic field. However, the motion of subbands and the spin dependence of these motions are clearly shown by thermopower spectroscopy. These results may help understand the origin of ZBPs and 0.7 structure.
Style APA, Harvard, Vancouver, ISO itp.
2

Heyder, Jan. "The 0.7 anomaly in quantum point contacts". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178912.

Pełny tekst źródła
Streszczenie:
This thesis aims at shedding light on the microscopic origin of a phenomenon in the field of semiconductor nanostructures, which occurs in transport through a short and narrow quasi one-dimensional constriction, the quantum point contact (QPC). Unlike the stepwise increase of linear conductance of a QPC as function of its width in units of the quantum GQ, which is well understood and was predicted already in the 1950s, an additional shoulder-like step at 0.7xG_Q raises questions since its discovery in 1996 : the 0.7 anomaly. Subsequent experimental investigations revealed a plethora of accompanying features of this fascinating structure. Most famously these include a strong reduction of conductance in the sub-open regime of a QPC as function of external parameters such as magnetic field, temperature or bias voltage. While it is agreed upon that the 0,7 anomaly arises from electron-electron interactions, the high number of theoretical attempts at an explanation indicates that the detailed microscopic origin of the peculiar shoulder is still subject to controversal discussions. In particular no theory seems to describe the whole variety of signatures of the 0.7 anomaly sufficiently. Here, we present a microscopic model that qualifies to meet this requirement. We model the effective barrier of the lowest transport mode of a QPC by a one-dimensional parabolic potential with short-ranged Coulomb interactions. By systematic analysis of experimental data we show that a parabolic barrier approximates the actual barrier shape of the QPC adequately well. In order to understand the physics of a QPC in detail, we put emphasis on the noninteracting properties of our model; we find a pronounced maximum in the local density of states in the vicinity of the barrier center at energies just above the potential. Importantly, this "van Hove ridge", which can be associated with slow electrons above the barrier coincides with the chemical potential if the QPC is tuned to be sub-open. Here, it causes an enhancement of backscattering at finite interactions and a subsequent anomalous reduction of conductance. In case of a magnetic field the underlying mechanism for this reduction is an interaction-enhanced local depopulation of the disfavoured spin species' subband; at finite excitation energies the reduction is a consequence of an interaction-enhanced inelastic backstattering probability. Hence, the interplay of van Hove ridge and electron-electron interactions provides a natural explanation for the appearance of the 0.7 anomaly and its various features. We calculate properties of our interacting one-dimensional QPC model using two methods: A specially developed approximation scheme within the functional renormalization group (fRG) provides reliable results for the magnetic field dependence of the 0.7 anomaly at zero temperature. At finite temperature and finite bias voltage we rely on second order perturbation theory in the interaction (SOPT). Since SOPT's validity is restricted to weaker interaction strength, where calculations clearly show the right trend but not yet the full manifestation of the 0.7 anomaly, we are currently setting up an extension of our fRG approach within the Keldysh formalism, which will allow us to also explore finite excitation energies.
Style APA, Harvard, Vancouver, ISO itp.
3

Liu, Tai-Min. "Electronic Interactions in Semiconductor Quantum Dots and Quantum Point Contacts". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1311773375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Keyser, Ulrich Felix. "Nanolithography with an atomic force microscope quantum point contacts, quantum dots, and quantum rings /". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966282337.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gustafsson, Alexander. "Electron transport in quantum point contacts : A theoretical study". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-10771.

Pełny tekst źródła
Streszczenie:
Electron transport in mesoscopic systems, such as quantum point contacts and Aharonov-Bohm rings are investigated numerically in a tight-binding language with a recursive Green's function algorithm. The simulation reveals among other things the quantized nature of the conductance in point contacts, the Hall conductance, the decreasing sensitivity to scattering impurities in a magnetic field, and the periodic magnetoconductance in an Aharonov-Bohm ring. Furthermore, the probability density distributions for some different setups are mapped, making the transmission coefficients, the quantum Hall effect, and the cyclotron radius visible, where the latter indicates the correspondance between quantum mechanics and classical physics on the mesoscopic scale.
Style APA, Harvard, Vancouver, ISO itp.
6

Moore, Lindsay Shannon. "Novel devices for measuring interactions in quantum point contacts /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hadji-Ristic, Daniel Ilan. "Thermo-electric and transport properties of etched quantum point contacts". Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bauer, Florian. "Microscopic Origin of the 0.7-Anomaly in Quantum Point Contacts". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178928.

Pełny tekst źródła
Streszczenie:
A Quantum point contact (QPC) is a one dimensional constriction, separating two extended electron systems allowing transport between them only though a short and narrow channel. The linear conductance of QPCs is quantized in units of the conductance quantum G_Q=2e^2/h, where e is the electron charge and h is Planck's constant. Thus the conductance shows a staircase when plotted as a function of gate-voltage which defines the width of the channel. In addition measured curves show a shoulder-like step around 0.7G_Q. In this regime QPCs show anomalous behaviour in quantities like electrical or thermal conductance, noise, and thermopower, as a function of external parameters such as temperature, magnetic field, or applied voltage. These phenomena, collectively known as the 0.7-anomaly in QPCs are subject of controversial discussion. This thesis offers a detailed description of QPCs in the parameter regime of the 0.7-anomaly. A model is presented which reproduces the phenomenology of the 0.7-anomaly. We give an intuitive picture and a detailed description of the microscopic mechanism leading to the anomalous behavior. Further, we offer detailed predictions for the behavior of the 0.7-anomaly in the presence of spin-orbit interactions. Our best theoretical results were achieved using an approximation scheme within the functional renormalization group (fRG) which we developed to treat inhomogeneous interacting fermi systems. This scheme, called the coupled ladder approximation (CLA), allows the flow of the two-particle vertex to be incorporated even if the number of interacting sites N, is large, by reducing the number of independent variables which represent the two-particle vertex from O(N^4) to O (N^2).
Style APA, Harvard, Vancouver, ISO itp.
9

Freudenfeld, Jaan [Verfasser]. "Coupling Quantum Point Contacts via Ballistic Electron Optics / Jaan Freudenfeld". Berlin : Freie Universität Berlin, 2021. http://d-nb.info/123127607X/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jones, Alexander M. "Onset of Spin Polarization in Four-Gate Quantum Point Contacts". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1485188708345005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Quantum point contacts"

1

Kramer, B., red. Electronic Transport. Part 1: Quantum Point Contacts and Quantum Wires. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b55682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

(Contributor), A. Fechner, B. Kramer (Contributor Editor) i D. Wharam (Contributor), red. Quantum Point Contacts and Quantum Wires (Landolt-Bornstein). Springer, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Krishnaswamy, Anasuya Erin. Nonequilibrium electron transport in quantum dot and quantum point contact systems. 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kotkin, G. L., i V. G. Serbo. Exploring Classical Mechanics. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198853787.001.0001.

Pełny tekst źródła
Streszczenie:
This book was written by the working physicists for students and teachers of physics faculties of universities. Its contents correspond roughly to the corresponding course in the textbooks Mechanics by L. D. Landau and E. M. Lifshitz (1976) and Classical Mechanics by H. Goldstein, Ch. Poole, and J. Safko (2000). As a rule, the given solution of a problem is not finished with obtaining the required formulae. It is necessary to analyse the results, and this is of great interest and by no means a mechanical part of the solution. The authors consider classical mechanics as the first chapter of theoretical physics; the methods and ideas developed in this chapter are literally important for all other sections of theoretical physics. Thus, the authors have indicated wherever this does not require additional amplification, the analogy or points of contact with the problems in quantum mechanics, electrodynamics, or statistical mechanics. The first English edition of this book was published by Pergamon Press in 1971 with the invaluable help by the translation editor D. ter Haar. This second English publication is based on the fourth Russian edition of 2010 as well as the problems added in the publications in Spanish and French. As a result, this book contains 357 problems instead of the 289 problems that appeared in the first English edition.
Style APA, Harvard, Vancouver, ISO itp.
5

Carlip, Steven. General Relativity. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198822158.001.0001.

Pełny tekst źródła
Streszczenie:
This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Quantum point contacts"

1

Baer, Stephan, i Klaus Ensslin. "Quantum Point Contacts". W Transport Spectroscopy of Confined Fractional Quantum Hall Systems, 133–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21051-3_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ruitenbeek, J. M. "Quantum Point Contacts Between Metals". W Mesoscopic Electron Transport, 549–79. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Katsumoto, Shingo, Naokatsu Sano i Shun-ichi Kobayashi. "Phase Velocity Tuning in Quantum Point Contacts". W Science and Technology of Mesoscopic Structures, 81–86. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

van Honten, H., i C. W. J. Beenakker. "Quantum Point Contacts and Coherent Electron Focusing". W Analogies in Optics and Micro Electronics, 203–25. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2009-5_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Farusaki, A. "DC Josephson Effect of Superconducting Quantum Point Contacts". W Springer Series in Solid-State Sciences, 255–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84818-6_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

van den Brom, H. E., i J. M. van Ruitenbeek. "Shot Noise Suppression in Metallic Quantum Point Contacts". W Statistical and Dynamical Aspects of Mesoscopic Systems, 114–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-45557-4_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Glattli, D. C., Y. Jin, L. H. Reydellet i P. Roche. "Photo-Assisted Electron-Hole Partition Noise in Quantum Point Contacts". W Quantum Noise in Mesoscopic Physics, 135–48. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0089-5_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Goodnick, S. M., J. C. Smith, C. Berven i M. N. Wybourne. "Nonequilibrium Transport and Current Instabilities in Quantum Point Contacts". W Hot Carriers in Semiconductors, 255–59. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_59.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Beenakker, Carlo, i Henk van Houten. "Superconducting Quantum Point Contacts and Other Mesoscopic Josephson Junctions". W Science and Technology of Mesoscopic Structures, 232–34. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_23.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yacobi, Amir, i Yoseph Imry. "Adiabatic Mode Selection and Accuracy of Quantization of Ballistic Point Contacts". W Quantum Coherence in Mesoscopic Systems, 169–73. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3698-1_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Quantum point contacts"

1

Lotoreichik, V., H. Neidhardt i I. Yu Popov. "Point contacts and boundary triples". W QMath12 – Mathematical Results in Quantum Mechanics. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814618144_0024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Rokhinson, L. P., L. N. Pfeiffer i K. W. West. "Spontaneous spin polarization in quantum point contacts". W PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wan, J., M. Cahay, P. Debray i R. S. Newrock. "All-electric spintronics with quantum point contacts". W 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5698056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hashisaka, Masayuki, Yoshiaki Yamauchi, Shuji Nakamura, Shinya Kasai, Teruo Ono, Kensuke Kobayashi, Marília Caldas i Nelson Studart. "Bolometric Shot Noise Detection in Coupled Quantum Point Contacts". W PHYSICS OF SEMICONDUCTORS: 29th International Conference on the Physics of Semiconductors. AIP, 2010. http://dx.doi.org/10.1063/1.3295455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sasaki, S., R. C. Liu, K. Tsubaki, T. Honda i S. Tarucha. "Shot Noise in Single and Double Quantum Point Contacts". W 1996 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1996. http://dx.doi.org/10.7567/ssdm.1996.la-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Scappucci, G., L. Di Gaspare, E. Giovine, A. Notargiacomo, R. Leoni i F. Evangelisti. "Conductance Quantization in Schottky-gated Si/SiGe Quantum Point Contacts". W PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Tanamoto, Tetsufumi, i Xuedong Hu. "Measurement of Two-Qubit States detected by Quantum Point Contacts". W 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.e-10-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

SHEVCHENKO, S. N., YU A. KOLESNICHENKO i A. N. OMELYANCHOUK. "JOSEPHSON EFFECT IN POINT CONTACTS BETWEEN “F-WAVE” SUPERCONDUCTORS". W Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Grbić, B., R. Leturcq, T. Ihn, K. Ensslin, D. Reuter i A. D. Wieck. "Hole transport in p-type GaAs quantum dots and point contacts". W PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

ETO, M., T. HAYASHI, Y. KUROTANI i H. YOKOUCHI. "CREATION OF SPIN-POLARIZED CURRENT USING QUANTUM POINT CONTACTS AND ITS DETECTION". W Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Quantum point contacts"

1

Berman, G. P., G. D. Doolen, R. Mainieri, I. E. Aronov, D. K. Campbell, N. N. Beletskii i S. V. Dudiy. A.c. transport and collective excitation in a quantum point contact. Office of Scientific and Technical Information (OSTI), luty 1998. http://dx.doi.org/10.2172/671983.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Karadi, Chandu. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact. Office of Scientific and Technical Information (OSTI), wrzesień 1995. http://dx.doi.org/10.2172/195745.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii