Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum phenomenon- Two dimensional electron gas.

Artykuły w czasopismach na temat „Quantum phenomenon- Two dimensional electron gas”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum phenomenon- Two dimensional electron gas”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Rees, David G., i Kimitoshi Kono. "Single-File Transport of Classical Electrons on the Surface of Liquid Helium". Biophysical Reviews and Letters 09, nr 04 (grudzień 2014): 397–411. http://dx.doi.org/10.1142/s1793048014400062.

Pełny tekst źródła
Streszczenie:
Electrons trapped on the surface of liquid helium form a model two-dimensional system. Because the electron density is low (~ 109 cm-2) and the Coulomb interaction between the electrons is essentially unscreened, the system can be regarded as a classical analogue of the degenerate Fermi gas. Electrons on helium have therefore long been used to study many-body transport phenomena in two dimensions. Here we review recent experiments investigating the transport of electrons on helium through microscopic constrictions formed in microchannel devices. Two constriction geometries are studied; short saddle-point constrictions and long constrictions in which the length greatly exceeds the width. In both cases, the constriction width can be tuned electrostatically so that the electrons move in single file. As the width of the short constriction is increased, a periodic suppression of the electron current is observed due to pinning for commensurate states of the electron lattice. A related phenomenon is observed for the long constriction whereby the quasi-one-dimensional Wigner lattice exhibits reentrant melting as the number of electron chains increases. Our results demonstrate that electrons on helium are an ideal system in which to study many-body transport in the limit of single-file motion. [Formula: see text] Special Issue Comments: This article presents experimental results on the dynamics of classical electrons moving on the surface of liquid helium in narrow channels with constrictions, with a focus on the "quantum wire", i.e. single file, regime. This article is related to the Special Issue articles about advanced statistical properties in single file dynamics34 and the mathematical results on electron dynamics in liquid helium.35
Style APA, Harvard, Vancouver, ISO itp.
2

Belchior, J. C., J. P. Braga i N. HT Lemes. "Classical analysis of intermolecular potentials for Ar–CO2 rotational collisions". Canadian Journal of Chemistry 79, nr 2 (1.02.2001): 211–20. http://dx.doi.org/10.1139/v00-165.

Pełny tekst źródła
Streszczenie:
Classical trajectory calculations have been performed for four potential energy functions to describe Ar–CO2 collisions. A comparison is given between classical cross sections calculated using the two most recent potential surfaces and two older intermolecular potential surfaces based on the electron gas model. The two-dimensional atom ellipsoid model has also been applied for the study of multiple collisions. The model was able to predict such a phenomenon in agreement with quantum scattering results previously published for an ab initio potential surface in the region of very low collision energy. On the other hand, the two older potentials showed multiple collision effects at very high energies. The comparison of the cross sections showed some deviations from the experimental data. By introducing two parameters, a modified surface is proposed by changing the most recent intermolecular potential. In this case the agreement with experimental measurements and theoretical scattering cross sections was considerably improved. It is concluded that global potential surfaces for describing Ar–CO2 interaction are not well established. To achieve the requirement of reproducing all properties of this system, the present work suggests that one needs further experimental and theoretical investigations. Key words: classical trajectories, dynamics, cross sections, Ar–CO2 collisions, potentials.
Style APA, Harvard, Vancouver, ISO itp.
3

Konstantinov, O. V., i O. A. Mezrin. "Quantum hall effect in two-dimensional electron gas". Measurement Techniques 28, nr 4 (kwiecień 1985): 307–12. http://dx.doi.org/10.1007/bf00862369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kochereshko, V. P., D. A. Andronikov, A. A. Klochikhin, G. V. Mikhailov, S. A. Crooker, G. Karczewski i J. Kossut. "COMBINED EXCITON-ELECTRON PROCESSES IN TWO-DIMENSIONAL ELECTRON GAS". International Journal of Modern Physics B 21, nr 08n09 (10.04.2007): 1535–40. http://dx.doi.org/10.1142/s0217979207043154.

Pełny tekst źródła
Streszczenie:
Modifications of photoluminescence (PL) spectra taken from modulation doped CdTe/CdMgTe quantum well (QW) structures have been studied in magnetic fields up to 45T as a function of 2D electron concentration.
Style APA, Harvard, Vancouver, ISO itp.
5

Moon, Christopher R., Laila S. Mattos, Brian K. Foster, Gabriel Zeltzer i Hari C. Manoharan. "Quantum holographic encoding in a two-dimensional electron gas". Nature Nanotechnology 4, nr 3 (25.01.2009): 167–72. http://dx.doi.org/10.1038/nnano.2008.415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Diez, E., Y. P. Chen, S. Avesque, M. Hilke, E. Peled, D. Shahar, J. M. Cerveró, D. L. Sivco i A. Y. Cho. "Two-dimensional electron gas in InGaAs∕InAlAs quantum wells". Applied Physics Letters 88, nr 5 (30.01.2006): 052107. http://dx.doi.org/10.1063/1.2168666.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pan, W., E. Dimakis, G. T. Wang, T. D. Moustakas i D. C. Tsui. "Two-dimensional electron gas in monolayer InN quantum wells". Applied Physics Letters 105, nr 21 (24.11.2014): 213503. http://dx.doi.org/10.1063/1.4902916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Heijden, R. W. van der, M. C. M. van de Sanden, J. H. G. Surewaard, A. T. A. M. de Waele, H. M. Gijsman i F. M. Peeters. "Quantum Magnetoconductance of a Nondegenerate Two-Dimensional Electron Gas". Europhysics Letters (EPL) 6, nr 1 (1.05.1988): 75–80. http://dx.doi.org/10.1209/0295-5075/6/1/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Park, Tae-ik, i Godfrey Gumbs. "Quantum magnetotransport in a modulated two-dimensional electron gas". Superlattices and Microstructures 22, nr 2 (wrzesień 1997): 161–79. http://dx.doi.org/10.1006/spmi.1996.0151.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Shimizu, Sunao, Mohammad Saeed Bahramy, Takahiko Iizuka, Shimpei Ono, Kazumoto Miwa, Yoshinori Tokura i Yoshihiro Iwasa. "Enhanced thermopower in ZnO two-dimensional electron gas". Proceedings of the National Academy of Sciences 113, nr 23 (24.05.2016): 6438–43. http://dx.doi.org/10.1073/pnas.1525500113.

Pełny tekst źródła
Streszczenie:
Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to ∼ 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities.
Style APA, Harvard, Vancouver, ISO itp.
11

Najafi, M. N., S. Tizdast, Z. Moghaddam i M. Samadpour. "Flicker noise in two-dimensional electron gas". Physica Scripta 96, nr 12 (30.11.2021): 125259. http://dx.doi.org/10.1088/1402-4896/ac3c11.

Pełny tekst źródła
Streszczenie:
Abstract Using the method developed in a recent paper (2019 Euro. Phys. J. B 92 1–28) we consider 1/f noise in two-dimensional electron gas (2DEG). The electron coherence length of the system is considered as a basic parameter for discretizing the space, inside which the dynamics of electrons is described by quantum mechanics, while for length scales much larger than it the dynamics is semi-classical. For our model, which is based on the Thomas-Fermi–Dirac approximation, there are two control parameters: temperature T and the disorder strength (Δ). Our Monte Carlo studies show that the system exhibits 1/f noise related to the electronic avalanche size, which can serve as a model for describing the experimentally observed flicker noise in 2DEG. The power spectrum of our model scales with the frequency with an exponent in the interval 0.3 < α PS < 0.6. We numerically show that the electronic avalanches are scale-invariant with power-law behaviors in and out of the metal-insulator transition line.
Style APA, Harvard, Vancouver, ISO itp.
12

Zhang, Liping. "Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering". Plasma Science and Technology 17, nr 10 (październik 2015): 826–30. http://dx.doi.org/10.1088/1009-0630/17/10/03.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Vasilopoulos, P., i F. M. Peeters. "Quantum magnetotransport of a periodically modulated two-dimensional electron gas". Physical Review Letters 63, nr 19 (6.11.1989): 2120–23. http://dx.doi.org/10.1103/physrevlett.63.2120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Konar, Aniruddha, Mohit Bajaj, Rajan K. Pandey i K. V. R. M. Murali. "Dielectric-environment mediated quantum screening of two-dimensional electron gas". Journal of Applied Physics 114, nr 11 (21.09.2013): 113707. http://dx.doi.org/10.1063/1.4821265.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Turchinovich, D. B., V. P. Kochereshko, D. R. Yakovlev, W. Ossau, G. Landwehr, T. Wojtowicz, G. Karczewski i J. Kossut. "Trions in quantum-well structures with two-dimensional electron gas". Physics of the Solid State 40, nr 5 (maj 1998): 747–49. http://dx.doi.org/10.1134/1.1130439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mendez, E. E., L. Esaki i L. L. Chang. "Quantum Hall Effect in a Two-Dimensional Electron-Hole Gas". Physical Review Letters 55, nr 20 (11.11.1985): 2216–19. http://dx.doi.org/10.1103/physrevlett.55.2216.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sachdev, Subir. "Quantum spin-glass transition in the two-dimensional electron gas". Pramana 58, nr 2 (luty 2002): 285–92. http://dx.doi.org/10.1007/s12043-002-0014-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Dragoman, Daniela. "Quantum Faraday effect in a quasi-two-dimensional electron gas". Journal of the Optical Society of America B 22, nr 12 (1.12.2005): 2697. http://dx.doi.org/10.1364/josab.22.002697.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Tan, Yong. "Quantum magnetotransport of a periodically modulated two-dimensional electron gas". Physical Review B 49, nr 3 (15.01.1994): 1827–35. http://dx.doi.org/10.1103/physrevb.49.1827.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Foden, C. L., M. L. Leadbeater, J. H. Burroughes i M. Pepper. "Quantum magnetic confinement in a curved two-dimensional electron gas". Journal of Physics: Condensed Matter 6, nr 10 (7.03.1994): L127—L134. http://dx.doi.org/10.1088/0953-8984/6/10/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Gusev, G. M., N. M. Sotomayor, A. C. Seabra, A. A. Quivy, T. E. Lamas i J. C. Portal. "Quantum Hall ferromagnet in a two-dimensional electron gas coupled with quantum dots". Physica E: Low-dimensional Systems and Nanostructures 34, nr 1-2 (sierpień 2006): 504–7. http://dx.doi.org/10.1016/j.physe.2006.03.097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Schreiber, Katherine A., i Gábor A. Csáthy. "Competition of Pairing and Nematicity in the Two-Dimensional Electron Gas". Annual Review of Condensed Matter Physics 11, nr 1 (10.03.2020): 17–35. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050550.

Pełny tekst źródła
Streszczenie:
Due to its extremely rich phase diagram, the two-dimensional electron gas exposed to perpendicular magnetic fields has been the subject of intense and sustained study. One particularly interesting problem in this system is that of the half-filled Landau level, where the Fermi sea of composite fermions, a fractional quantum Hall state arising from a pairing instability of the composite fermions, and the quantum Hall nematic were observed in the half-filled N = 0, N = 1, and N ≥ 2 Landau levels, respectively. Thus, different ground states developed in different half-filled Landau levels. This situation has recently changed, when evidence for both the paired fractional quantum Hall state and the quantum Hall nematic was reported in the half-filled N = 1 Landau level. Furthermore, a direct quantum phase transition between these two ordered states was found. These results highlight an intimate connection between pairing and nematicity, which is a topic of current interest in several strongly correlated systems, in a well-understood and low-disorder environment.
Style APA, Harvard, Vancouver, ISO itp.
23

Moskalenko, S. A., M. A. Liberman, B. V. Novikov, E. S. Kiseliova, E. V. Dumanov i F. Cerbu. "Two-Dimensional Magnetoexcitons in the Fractional Quantum Hall Regime". Ukrainian Journal of Physics 56, nr 10 (6.02.2022): 1037. http://dx.doi.org/10.15407/ujpe56.10.1037.

Pełny tekst źródła
Streszczenie:
The coplanar electrons and holes in a strong perpendicular magnetic field at low temperatures form magnetoexcitons when theCoulomb interactions between electrons and holes lying on the lowest Landau levels play the main role. However, when the electrons and hole layers are spatially separated, and the Coulomb electron-hole interaction diminishes, a two-dimensional electron gas (2DEG) and a two-dimensional hole gas (2DHG) are formed. Their properties under conditions of the fractional quantum Hall effect can influence the properties of 2D magnetoexcitons. These properties are discussed in the present review.
Style APA, Harvard, Vancouver, ISO itp.
24

van Houten, H., C. W. J. Beenakker, J. G. Williamson, M. E. I. Broekaart, P. H. M. van Loosdrecht, B. J. van Wees, J. E. Mooij, C. T. Foxon i J. J. Harris. "Coherent electron focusing with quantum point contacts in a two-dimensional electron gas". Physical Review B 39, nr 12 (15.04.1989): 8556–75. http://dx.doi.org/10.1103/physrevb.39.8556.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

DMITRIEV, ALEXANDER, VALENTIN KACHOROVSKI, MICHAEL S. SHUR i MICHAEL STROSCIO. "ELECTRON DRIFT VELOCITY OF THE TWO-DIMENSIONAL ELECTRON GAS IN COMPOUND SEMICONDUCTORS". International Journal of High Speed Electronics and Systems 10, nr 01 (marzec 2000): 103–10. http://dx.doi.org/10.1142/s0129156400000131.

Pełny tekst źródła
Streszczenie:
We show that, as a consequence of an enhanced electron runaway for two-dimensional (2D) electrons, the peak electron drift velocity and peak electric field in compound semiconductors are smaller than in bulk semiconductors. This prediction agrees with the results of Monte-Carlo simulations for the 2D electrons at a GaAs/GaAlAs heterointerface and with the measured peak velocities in InGaAs/InAlAs quantum wells.
Style APA, Harvard, Vancouver, ISO itp.
26

Gold, A., i R. Marty. "AlAs quantum wells: Transport properties of the two-dimensional electron gas". Journal of Applied Physics 102, nr 8 (15.10.2007): 083705. http://dx.doi.org/10.1063/1.2798591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Pierz, K., G. Hein, E. Pesel, B. Schumacher, H. W. Schumacher i U. Siegner. "Asymmetric double two-dimensional electron gas structures for electrical quantum metrology". Applied Physics Letters 92, nr 13 (31.03.2008): 133509. http://dx.doi.org/10.1063/1.2906377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Vasilyev, Yu, S. Suchalkin, M. Zundel, D. Heisenberg, K. Eberl i K. von Klitzing. "Properties of two-dimensional electron gas containing self-organized quantum antidots". Applied Physics Letters 75, nr 19 (8.11.1999): 2942–44. http://dx.doi.org/10.1063/1.125195.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Timofeev, V. B., A. V. Larionov, P. S. Dorozhkin, M. Bayer, A. Forchel i J. Straka. "Two-dimensional electron gas in double quantum wells with tilted bands". Journal of Experimental and Theoretical Physics Letters 65, nr 11 (czerwiec 1997): 877–82. http://dx.doi.org/10.1134/1.567440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Nuttinck, Sebastien, Katsushi Hashimoto, Sen Miyashita, Tadashi Saku, Yoshihisa Yamamoto i Yoshiro Hirayama. "Quantum Point Contacts in a Density-Tunable Two-Dimensional Electron Gas". Japanese Journal of Applied Physics 39, Part 2, No. 7A (1.07.2000): L655—L657. http://dx.doi.org/10.1143/jjap.39.l655.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Smoliner, J., F. Hirler, E. Gornik, G. Weimann, M. Hauser i W. Schlapp. "Tunnelling processes between quantum wires and a two-dimensional electron gas". Semiconductor Science and Technology 6, nr 5 (1.05.1991): 389–92. http://dx.doi.org/10.1088/0268-1242/6/5/013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Monarkha, Yu P., i F. M. Peeters. "Nonlinear cold quantum magnetotransport in a nondegenerate two-dimensional electron gas". Europhysics Letters (EPL) 34, nr 8 (10.06.1996): 611–16. http://dx.doi.org/10.1209/epl/i1996-00504-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Levanda, M., i V. Fleurov. "Quantum effects in the electron current flow in a quasi-two-dimensional electron gas". Journal of Physics: Condensed Matter 14, nr 50 (13.12.2002): 13727–42. http://dx.doi.org/10.1088/0953-8984/14/50/302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sakurai, Yoko, Jun-ichi Iwata, Masakazu Muraguchi, Yasuteru Shigeta, Yukihiro Takada, Shintaro Nomura, Tetsuo Endoh i in. "Temperature Dependence of Electron Tunneling between Two Dimensional Electron Gas and Si Quantum Dots". Japanese Journal of Applied Physics 49, nr 1 (20.01.2010): 014001. http://dx.doi.org/10.1143/jjap.49.014001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Suresha, Kasala. "Hot Electron Transport in Two-dimensional SiGe/Si Quantum Wells". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 1103–6. http://dx.doi.org/10.22214/ijraset.2023.50288.

Pełny tekst źródła
Streszczenie:
Abstract: The hot carrier energy loss rate in a two-dimensioal electron gas in SiGe/Si quantum well has been theoretically studied and carrier concentration ranging from 1.0x1012 to 5.0x1014 m-2. The energy loss rate in this highly non-parabolic system is dominated by acoustic deformation potential scattering, whereas the acoustic piezoelectric scattering is negligible. We also studied variation of energy loss rate with thickness of various quantum wells
Style APA, Harvard, Vancouver, ISO itp.
36

Berger, Michael, Dominik Schulz i Jamal Berakdar. "Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas". Nanomaterials 11, nr 5 (11.05.2021): 1258. http://dx.doi.org/10.3390/nano11051258.

Pełny tekst źródła
Streszczenie:
Quantum scars refer to an enhanced localization of the probability density of states in the spectral region with a high energy level density. Scars are discussed for a number of confined pure and impurity-doped electronic systems. Here, we studied the role of spin on quantum scarring for a generic system, namely a semiconductor-heterostructure-based two-dimensional electron gas subjected to a confining potential, an external magnetic field, and a Rashba-type spin-orbit coupling. Calculating the high energy spectrum for each spin channel and corresponding states, as well as employing statistical methods known for the spinless case, we showed that spin-dependent scarring occurs in a spin-coupled electronic system. Scars can be spin mixed or spin polarized and may be detected via transport measurements or spin-polarized scanning tunneling spectroscopy.
Style APA, Harvard, Vancouver, ISO itp.
37

Dharamvir, K., i K. N. Pathak. "Correlations in a two-dimensional quantum electron gas with ln(r) interactions". Journal of Physics: Condensed Matter 2, nr 19 (14.05.1990): 4429–38. http://dx.doi.org/10.1088/0953-8984/2/19/010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wu, Hua-rui, Bing-lan Wu, Shu-guang Cheng i Hua Jiang. "The realization of quantum anomalous Hall effect in two dimensional electron gas". Journal of Physics: Condensed Matter 33, nr 10 (21.12.2020): 105701. http://dx.doi.org/10.1088/1361-648x/abcd7e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kuzmenko, I. "Landau damping in a two-dimensional electron gas with imposed quantum grid". Nanotechnology 15, nr 5 (2.02.2004): 441–48. http://dx.doi.org/10.1088/0957-4484/15/5/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mori, N., K. Taniguchi, C. Hamaguchi, S. Sasa i S. Hiyamizu. "Magnetophonon resonance of a two-dimensional electron gas in a quantum well". Journal of Physics C: Solid State Physics 21, nr 9 (30.03.1988): 1791–805. http://dx.doi.org/10.1088/0022-3719/21/9/018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Smorchkova, I., N. Samarth, J. M. Kikkawa i D. D. Awschalom. "Quantum transport and magneto-optics in a magnetic two-dimensional electron gas". Journal of Applied Physics 81, nr 8 (15.04.1997): 4858–60. http://dx.doi.org/10.1063/1.364857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Nagano, Seido, K. S. Singwi i Shuhei Ohnishi. "Erratum: Correlations in a two-dimensional quantum electron gas: The ladder approximation". Physical Review B 31, nr 5 (1.03.1985): 3166. http://dx.doi.org/10.1103/physrevb.31.3166.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Apalkov, V. M., i Tapash Chakraborty. "Interaction of a quantum dot with an incompressible two-dimensional electron gas". Physica E: Low-dimensional Systems and Nanostructures 14, nr 3 (maj 2002): 289–93. http://dx.doi.org/10.1016/s1386-9477(01)00266-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Luo, Y. H., J. Wan, J. Yeh i K. L. Wang. "Photoluminescence of InAs quantum dots coupled to a two-dimensional electron gas". Journal of Electronic Materials 30, nr 5 (maj 2001): 459–62. http://dx.doi.org/10.1007/s11664-001-0083-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chattopadhyay, D. "Lattice-scattering mobility of two dimensional electron gas in semiconductor quantum wells". Solid State Communications 62, nr 6 (maj 1987): 395–97. http://dx.doi.org/10.1016/0038-1098(87)91041-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Mu, Yao-Ming, Y. Fu i M. Willander. "Quantum transport of two-dimensional electron gas through finite lateral magnetic superlattice". Superlattices and Microstructures 22, nr 2 (wrzesień 1997): 135–42. http://dx.doi.org/10.1006/spmi.1996.0154.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lyu Jie, Tang Ning, Shen Bo i Zhang Fu-Jia. "The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas". Acta Physica Sinica 55, nr 5 (2006): 2498. http://dx.doi.org/10.7498/aps.55.2498.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Saxler, A., P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova i in. "Electrical transport of an AlGaN/GaN two-dimensional electron gas". MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000): 619–25. http://dx.doi.org/10.1557/s1092578300004841.

Pełny tekst źródła
Streszczenie:
An AlxGa1−xN/GaN two-dimensional electron gas structure with x = 0.13 deposited by molecular beam epitaxy on a GaN layer grown by organometallic vapor phase epitaxy on a sapphire substrate was characterized. Hall effect measurements gave a sheet electron concentration of 5.1×1012 cm−2 and a mobility of 1.9 × 104 cm2/Vs at 10 K. Mobility spectrum analysis showed single-carrier transport and negligible parallel conduction at low temperatures. The sheet carrier concentrations determined from Shubnikov-de Haas magnetoresistance oscillations were in good agreement with the Hall data. The electron effective mass was determined to be 0.215±0.006 m0 based on the temperature dependence of the amplitude of Shubnikov-de Haas oscillations. The quantum lifetime was about one-fifth of the transport lifetime of 2.3 × 10−12 s.
Style APA, Harvard, Vancouver, ISO itp.
49

Kochereshko, V. P., Robert A. Suris i Dmitrii G. Yakovlev. "Effects of exciton–electron interaction in quantum well structures containing a two-dimensional electron gas". Physics-Uspekhi 43, nr 3 (31.03.2000): 293–95. http://dx.doi.org/10.1070/pu2000v043n03abeh000702.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ossau, W., D. R. Yakovlev, C. Y. Hu, V. P. Kochereshko, G. V. Astakhov, R. A. Suris, P. C. M. Christianen i J. C. Maan. "Exciton-electron interaction in quantum wells with a two dimensional electron gas of low density". Physics of the Solid State 41, nr 5 (maj 1999): 751–56. http://dx.doi.org/10.1134/1.1130863.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii