Gotowa bibliografia na temat „Quantum oscillation in insulator”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum oscillation in insulator”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Quantum oscillation in insulator"
Xiang, Z., Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, Lu Chen, K. Sugimoto i in. "Quantum oscillations of electrical resistivity in an insulator". Science 362, nr 6410 (30.08.2018): 65–69. http://dx.doi.org/10.1126/science.aap9607.
Pełny tekst źródłaSebastian, Suchitra E., Neil Harrison i Gilbert G. Lonzarich. "Quantum oscillations in the high- T c cuprates". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, nr 1941 (28.04.2011): 1687–711. http://dx.doi.org/10.1098/rsta.2010.0243.
Pełny tekst źródłaLu, Xin. "Magnetic quantum oscillation in a monolayer insulator". Journal of Semiconductors 42, nr 6 (1.06.2021): 060401. http://dx.doi.org/10.1088/1674-4926/42/6/060401.
Pełny tekst źródłaYang, Chao, Yi Liu, Yang Wang, Liu Feng, Qianmei He, Jian Sun, Yue Tang i in. "Intermediate bosonic metallic state in the superconductor-insulator transition". Science 366, nr 6472 (14.11.2019): 1505–9. http://dx.doi.org/10.1126/science.aax5798.
Pełny tekst źródłaOng, N. P. "Quantum oscillations in an insulator". Science 362, nr 6410 (4.10.2018): 32–33. http://dx.doi.org/10.1126/science.aau3840.
Pełny tekst źródłaNicolaeva, A. A., L. A. Conopco, I. A. Popov, G. I. Para, O. V. Botnari i T. E. Huber. "Квантовый размерный эффект и осцилляции Шубникова–де Гааза в поперечном магнитном поле в полупроводниковых нитях Bi0,92Sb0,08". Elektronnaya Obrabotka Materialov 57, nr 6 (grudzień 2021): 79–86. http://dx.doi.org/10.52577/eom.2021.57.6.79.
Pełny tekst źródłaZHANG, SHENG-NAN, HUA JIANG i HAIWEN LIU. "NUMERICAL STUDY OF TRANSPORT PROPERTIES IN TOPOLOGICAL INSULATOR QUANTUM DOTS UNDER MAGNETIC FIELD". Modern Physics Letters B 27, nr 14 (16.05.2013): 1350104. http://dx.doi.org/10.1142/s0217984913501042.
Pełny tekst źródłaZhang, T., G. Li, S. C. Sun, N. Qin, L. Kang, S. H. Yao, H. M. Weng i in. "Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation". Chinese Physics B 29, nr 1 (styczeń 2020): 017304. http://dx.doi.org/10.1088/1674-1056/ab6206.
Pełny tekst źródłaKholod, A. N., V. E. Borisenko, A. Zaslavsky i F. Arnaud d’Avitaya. "Current oscillations in semiconductor-insulator multiple quantum wells". Physical Review B 60, nr 23 (15.12.1999): 15975–79. http://dx.doi.org/10.1103/physrevb.60.15975.
Pełny tekst źródłaRamazashvili, R., F. Bègue i P. Pujol. "Diagnosing a strong topological insulator by quantum oscillations". Journal of Physics: Conference Series 592 (18.03.2015): 012127. http://dx.doi.org/10.1088/1742-6596/592/1/012127.
Pełny tekst źródłaRozprawy doktorskie na temat "Quantum oscillation in insulator"
Sato, Yuki. "Quantum oscillations and charge-neutral fermions in Kondo insulator YbB₁₂". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263447.
Pełny tekst źródłaBègue, Frédéric. "Isolants topologiques et magnétisme". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30392/document.
Pełny tekst źródłaThe discovery of the quantum Hall effect by von Klitzing in 1980 paved the way for what is now known as topological band theory. In this theory, we are interested not only in the energy spectra of the electrons in crystals, but also in the topological structure of the bands. A new phase of matter was discovered thanks to this theory : the topological insulators. Topological insulators are unique in the sense that they behave like trivial insulators in the bulk, but possess metallic edge states. In this thesis, we are particularly interested in so-called Z2 topological insulators, whose edge states are protected by time reversal symmetry : they cannot disappear in the presence of a perturbation that respects this symmetry, without the system undergoing a quantum phase transition. For three-dimensional topological insulators, we propose an experimental criterion based on magnetic quantum oscillations to identify a special kind of topological insulators : the strong topological insulator. In two dimensions, we study the consequences of time reversal symmetry breaking due to anti-ferromagnetic order. In this case, the important symmetry is time reversal times a trans- lation. In this context, we first establish an analytical expression for systems that also have inversion symmetry. We then adapt three numerical methods usually employed for time reversal symmetric systems : the reconnection phase method, the Wannier charge center method and the explicit construction of edge states. We show that they are useful to probe the topology of models for which no methods were available ; such as non-centrosymmetric systems
Semeniuk, Konstantin. "Correlated low temperature states of YFe2Ge2 and pressure metallised NiS2". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274346.
Pełny tekst źródłaKhan, Hasan. "Quantum Fluctuations Across the Superconductor-Insulator Transition". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1553188107263297.
Pełny tekst źródłaTan, Hong'En. "High pressure quantum oscillation study of BiTeI and Bi2Te3". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284884.
Pełny tekst źródłaDoiron-Leyraud, Nicolas. "Quantum oscillation and high pressure studies on correlated metals". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619930.
Pełny tekst źródłaMottahedeh, Roya. "Various aspects of quantum Hall effect". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306508.
Pełny tekst źródłaRenberg, Rasmus. "Superconductor-Insulator Quantum Phase Transitions in a Dissipative Environment". Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239615.
Pełny tekst źródłaHsu, Yu-Te. "Unconventional Fermi surface in insulating SmB6 and superconducting YBa2Cu3O6+x probed by high magnetic fields". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/280314.
Pełny tekst źródłaLi, Li. "Study of Metal-Insulator-Metal Diodes for Photodetection". University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1367319217.
Pełny tekst źródłaKsiążki na temat "Quantum oscillation in insulator"
Sato, Yuki. Quantum Oscillations and Charge-Neutral Fermions in Topological Kondo Insulator YbB₁₂. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5677-4.
Pełny tekst źródłaHiroyuki, Yokoyama, i Ujihara Kikuo, red. Spontaneous emission and laser oscillation in microcavities. Boca Raton: CRC Press, 1995.
Znajdź pełny tekst źródłaSato, Yuki. Quantum Oscillations and Charge-Neutral Fermions in Topological Kondo Insulator YbB12. Springer Singapore Pte. Limited, 2022.
Znajdź pełny tekst źródłaSato, Yuki. Quantum Oscillations and Charge-Neutral Fermions in Topological Kondo Insulator YbB₁₂. Springer, 2022.
Znajdź pełny tekst źródłaTrivedi, Nandini. Conductor-insulator quantum phase transitions. Oxford University Press, 2012.
Znajdź pełny tekst źródłaDobrosavljevic, Vladimir, Nandini Trivedi i James M. Valles, Jr., red. Conductor-Insulator Quantum Phase Transitions. Oxford University Press, 2012. http://dx.doi.org/10.1093/acprof:oso/9780199592593.001.0001.
Pełny tekst źródłaTrivedi, Nandini, Valles James M. Jr i Vladimir Dobrosavljevic. Conductor Insulator Quantum Phase Transitions. Oxford University Press, 2012.
Znajdź pełny tekst źródłaTrivedi, Nandini, i Vladimir Dobrosavljevic. Conductor Insulator Quantum Phase Transitions. Oxford University Press, 2012.
Znajdź pełny tekst źródłaIeki, Kei. Observation of ν_μ→ν_e Oscillation in the T2K Experiment. Springer London, Limited, 2015.
Znajdź pełny tekst źródłaKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech i Fabrice P. Laussy. Quantum Fluids of Light. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.003.0010.
Pełny tekst źródłaCzęści książek na temat "Quantum oscillation in insulator"
He, Hongtao, i Jiannong Wang. "Weak Antilocalization Effect, Quantum Oscillation, and Superconducting Proximity Effect in 3D Topological Insulators". W Topological Insulators, 331–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527681594.ch13.
Pełny tekst źródłaSuekane, Fumihiko. "Neutrino Oscillation: Relativistic Oscillation of Three-Flavor System". W Quantum Oscillations, 145–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70527-5_12.
Pełny tekst źródłaSuekane, Fumihiko. "Basics of the Quantum Oscillation". W Quantum Oscillations, 1–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70527-5_1.
Pełny tekst źródłaSuekane, Fumihiko. "Fermion Mass and Chirality Oscillation". W Quantum Oscillations, 73–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70527-5_7.
Pełny tekst źródłaOhtsu, Motoichi. "Principles of Laser Oscillation". W Coherent Quantum Optics and Technology, 21–48. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1632-9_2.
Pełny tekst źródłaKawakami, Y., S. Iwai, N. Yoneyama, T. Sasaki i N. Kobayashi. "Photo-induced macroscopic oscillation between insulator and metal in layered organic Mott insulator". W Springer Series in Chemical Physics, 176–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_57.
Pełny tekst źródłaMarkoš, P. "Universality of the Metal-Insulator Transition". W Quantum Dynamics of Submicron Structures, 99–102. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_8.
Pełny tekst źródłaPearsall, Thomas P. "Non-linear Optics: Second-Harmonic Generation and Parametric Oscillation". W Quantum Photonics, 257–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47325-9_9.
Pełny tekst źródłaPearsall, Thomas P. "Non-linear Optics: Second-Harmonic Generation and Parametric Oscillation". W Quantum Photonics, 267–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_9.
Pełny tekst źródłaSuekane, Fumihiko. "$$K^0$$-$${\overline{K^0}}$$ Oscillation and CP Violation". W Quantum Oscillations, 97–110. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70527-5_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Quantum oscillation in insulator"
Shi, Xiaodong, Weichen Fan, Ailun Yi, Xin Ou, Karsten Rottwitt i Haiyan Ou. "Dual-pump Optical Parametric Oscillation in a 4H-SiC-on-insulator Microring Resonator". W 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542432.
Pełny tekst źródłaUrkude, Rajashri, Rajeev Rawat i Umesh Palikundwar. "Surface quantum oscillations and weak antilocalization effect in topological insulator (Bi0.3Sb0.7)2Te3". W DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029008.
Pełny tekst źródłaBlasone, Massimo, Silvio De Siena i Cristina Matrella. "Quantum correlations in neutrino mixing and oscillations". W Neutrino Oscillation Workshop. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.421.0035.
Pełny tekst źródłaHE, H. T., Z. Y. LAW, A. H. CHAN i C. H. OH. "NON-RELATIVISTIC NEUTRINO OSCILLATION IN DENSE MEDIUM". W Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814335614_0048.
Pełny tekst źródłaGuidry, Melissa A., Ki Youl Yang, Daniil M. Lukin, Joshua Yang i Jelena Vučković. "Optical Parametric Oscillation Using 4H-SiC-on-Insulator Nanophotonics". W CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_qels.2020.fth3j.7.
Pełny tekst źródłaNeveu, Pascal, Marie-Aude Maynard, Chitram Banerjee, Jasleen Lugani, Etienne Brion, Fabienne Goldfarb i Fabien Bretenaker. "Coherent Population Oscillation-Based Light Storage". W Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qt6a.60.
Pełny tekst źródłaRyu, Changhyun, Xu Du, Emek Yesilada, Nathan Harrison i Daniel J. Heinzen. "Raman photoassociation of a Mott insulator". W International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.itue6.
Pełny tekst źródłaChen, Pai-Yu, Jae-sun Seo, Yu Cao i Shimeng Yu. "Compact oscillation neuron exploiting metal-insulator-transition for neuromorphic computing". W ICCAD '16: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2966986.2967015.
Pełny tekst źródłaKim, Duk Y., Taek Jeong, Dong Hwan Kim i Zaeill Kim. "Microwave-photon generation by polarized infrared radiation in a ferrimagnetic insulator". W Quantum Communications and Quantum Imaging XXI, redaktorzy Keith S. Deacon i Ronald E. Meyers. SPIE, 2023. http://dx.doi.org/10.1117/12.2675024.
Pełny tekst źródłaChang, Lin. "Aluminium Gallium Arsenide on Insulator for Integrated Quantum Photonics". W Photonics for Quantum. SPIE, 2021. http://dx.doi.org/10.1117/12.2603537.
Pełny tekst źródłaRaporty organizacyjne na temat "Quantum oscillation in insulator"
Gilbert, Matthew J. Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures. Fort Belvoir, VA: Defense Technical Information Center, listopad 2013. http://dx.doi.org/10.21236/ada606266.
Pełny tekst źródłaGilbert, Matthew. Topological Quantum Information Processing Mediated Via Hybrid Topogical Insulator Structures. Fort Belvoir, VA: Defense Technical Information Center, marzec 2014. http://dx.doi.org/10.21236/ada602907.
Pełny tekst źródłaPan, Wei, Tzu-Ming Lu, J. S. Xia, N. S. Sullivan, S. H. Huang, Y. Chuang, J. Y. Li, C. W. Liu i D. C. Tsui. National High Magnetic Field Laboratory 2016 Annual Research Report: Termination of Two-Dimensional Metallic Conduction near the Metal-Insulator Transition in Si/SiGe Quantum Wells. Office of Scientific and Technical Information (OSTI), grudzień 2016. http://dx.doi.org/10.2172/1505355.
Pełny tekst źródła