Gotowa bibliografia na temat „Quantum optics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum optics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Quantum optics"

1

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, nr 5270 (28.06.1996): 1897–98. http://dx.doi.org/10.1126/science.272.5270.1897-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, nr 5270 (28.06.1996): 1897b—1898b. http://dx.doi.org/10.1126/science.272.5270.1897b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Walls, Daniel F., Gerard J. Milburn i Wolfgang P. Schleich. "Quantum Optics". Physics Today 48, nr 6 (czerwiec 1995): 55–56. http://dx.doi.org/10.1063/1.2808065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Scully, Marlan O., M. Suhail Zubairy i Ian A. Walmsley. "Quantum Optics". American Journal of Physics 67, nr 7 (lipiec 1999): 648. http://dx.doi.org/10.1119/1.19344.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bienfang, Joshua C., Alex J. Gross, Alan Mink, Charles W. Clark, Robert W. Boyd, Ryan S. Bennink, Sean J. Bentley, John C. Howell, D. R. Solli i J. M. Hickmann. "Quantum Optics". Optics and Photonics News 15, nr 12 (1.12.2004): 38. http://dx.doi.org/10.1364/opn.15.12.000038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Walls, D. F., G. J. Milburn i John C. Garrison. "Quantum Optics". American Journal of Physics 63, nr 5 (maj 1995): 477–78. http://dx.doi.org/10.1119/1.17886.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Thompson, R. C. "Quantum Optics". Journal of Modern Optics 42, nr 2 (luty 1995): 489. http://dx.doi.org/10.1080/09500349514550441.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

KLYSHKO, D. N. "Quantum Optics". Annals of the New York Academy of Sciences 755, nr 1 (kwiecień 1995): 13–26. http://dx.doi.org/10.1111/j.1749-6632.1995.tb38953.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Scully, Marian O., M. Suhail Zubairy i Peter W. Milonni. "Quantum Optics". Physics Today 51, nr 10 (październik 1998): 90–92. http://dx.doi.org/10.1063/1.882421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mekhov, I. B., i H. Ritsch. "Quantum optics with quantum gases". Laser Physics 19, nr 4 (kwiecień 2009): 610–15. http://dx.doi.org/10.1134/s1054660x09040136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Quantum optics"

1

Gao, Xuesong. "Quantum Nonlinear Optics". University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1564662783494271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Garrido, Mauricio. "Quantum Optics in Coupled Quantum Dots". Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1273589966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hessmo, Björn. "Quantum optics in constrained geometries". Doctoral thesis, Uppsala University, Department of Quantum Chemistry, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1208.

Pełny tekst źródła
Streszczenie:

When light exhibits particle properties, and when matter exhibits wave properties quantum mechanics is needed to describe physical phenomena.

A two-photon source produces nonmaximally entangled photon pairs when the source is small enough to diffract light. It is shown that diffraction degrades the entanglement. Quantum states produced in this way are used to probe the complementarity between path information and interference in Young's double slit experiment.

When two photons have a nonmaximally entangled polarization it is shown that the Pancharatnam phase is dependent on the entanglement in a nontrivial way. This could be used for implementing simple quantum logical circuits.

Magnetic traps are capable of holding cold neutral atoms. It is shown that magnetic traps and guides can be generated by thin wires etched on a surface using standard nanofabrication technology. These atom chips can hold and manipulate atoms located a few microns above the surface with very high accuracy. The potentials are very versatile and allows for highly complex designs, one such design implemented here is a beam splitter for neutral atoms. Interferometry with these confined de Broglie is also considered. These atom chips could be used for implementing quantum logical circuits.

Style APA, Harvard, Vancouver, ISO itp.
4

Stock, Ryan. "Silicon-based quantum optics and quantum computing". Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/111871/.

Pełny tekst źródła
Streszczenie:
In this thesis is presented a brief review of quantum computing, the DiVincenzo criteria, and the possibility of using a solid state system for building a quantum computing architecture. Donor electron systems in silicon are discussed, before chalcogen, \deep", double donors are suggested as a good candidate for fulfilment of the criteria; the optically driven Stoneham proposal, where the spin-spin interaction between two donor electron spin qbits is mediated by the optically controlled, excited, state of a third donor electron, forms the basis of this [1]. Coherence lifetimes are established as a vital requirement of a quantum bit, but radiative lifetimes must also be long. If the spin-spin interaction between qbits is decreased, or turned off, by the de-excitation of the mediating donor electron then the coherence of the qbit is rendered irrelevant; de-excitation will ruin quantum computations that depend upon an interaction that only happens when the mediating electron is in an excited state. Effective mass theory is used to estimate excited state donor, 2P, wavefunctions for selenium doped silicon, and recent Mott semiconductor to metal transition doping data [2] is used to scale the spatial extent of the 1S(A1) ground state wavefunction. Using these wavefunctions, the expected radiative lifetimes are then calculated, via Fermi's golden rule, to be between 9 ns and 17 ns for the 2P0 state, and 12 ns to 20 ns for the 2P_1 state. Fourier Transform InfraRed (FTIR) absorbance spectroscopy is used to determine the optical transitions for selenium donors in silicon, this has allowed agreement between literature, measured, and effective mass theory energy values for the particular samples measured. FTIR time resolved spectroscopy has then been used to measure the radiative emission spectrum of selenium doped silicon samples at 10-300K, following a 1220 nm laser pulse. Fitting to the exponentially decaying emission data, selenium radiative lifetimes as long as 80 ns are found; for the 2P0 to 1S(A1) transition in an atomic selenium donor complex at 10K. A factor of between 4 and 8 agreement is found between calculated and measured radiative lifetimes. This offers the possibility of nanosecond scale donor electron coherence times for chalcogen dopants in silicon.
Style APA, Harvard, Vancouver, ISO itp.
5

Ekert, Artur Konrad. "Correlations in quantum optics". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293479.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Htoon, Han. "Studies on quantum coherence phenomena of self-assembled quantum dots". Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

HOLM, DAVID ALLEN. "QUANTUM THEORY OF MULTIWAVE MIXING (RESONANCE FLUORESCENCE, SATURATION SPECTROSCOPY, MODULATION, PHASE CONJUGATION, QUANTUM NOISE)". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187980.

Pełny tekst źródła
Streszczenie:
This dissertation formulates and applies a theory describing how one or two strong classical waves and one or two weak quantum mechanical waves interact in a two-level medium. The theory unifies many topics in quantum optics, such as resonance fluorescence, saturation spectroscopy, modulation spectroscopy, the build up of laser and optical bistability instabilities, and phase conjugation. The theory is based on a quantum population pulsation approach that resembles the semiclassical theories, but is substantially more detailed. Calculations are performed to include the effects of inhomogeneous broadening, spatial hole burning, and Gaussian transverse variations. The resonance fluorescence spectrum in a high finesse optical cavity is analyzed in detail, demonstrating how stimulated emission and multiwave processes alter the spectrum from the usual three peaks. The effects of quantum noise during the propagation of weak signal and conjugate fields in phase conjugation and modulation spectroscopy are studied. Our analysis demonstrates that quantum noise affects not only the intensities of the signal and conjugate, but also their relative phase, and in particular we determine a quantum limit to the semiclassical theory of FM modulation spectroscopy. Finally, we derive the corresponding theory for the two-photon, two-level medium. This yields the first calculation of the two-photon resonance fluorescence spectrum. Because of the greater number of possible interactions in the two-photon two-level model, the theoretical formalism is considerably more complex, and many effects arise that are absent in the one-photon problem. We discuss the role of the Stark shifts on the emission spectrum and show how the Rayleigh scattering is markedly different.
Style APA, Harvard, Vancouver, ISO itp.
8

Bocquillon, Erwann. "Electron quantum optics in quantum Hall edge channels". Paris 6, 2012. http://www.theses.fr/2012PA066692.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à la manipulation d'excitations mono-électroniques dans un conducteur quantique balistique, par l'implémentation d'expériences d'optique quantique électronique avec la résolution d'une charge élémentaire. Une capacité mésoscopique produit à la demande des excitations monoélectroniques dans le canal de bord externe de l'effet Hall quantique. Nous mesurons les fluctuations de courant après partitionnement des excitations sur une lame séparatrice électronique, dans un analogue de l'expérience de Hanbury-Brown & Twiss, afin de révéler les excitations neutres (paires électron/trou) qui peuvent accompagner la charge produite. Les excitations thermiques dans la mer de Fermi sont alors responsables d'interférences à deux particules qui permettent d'obtenir des informations sur la distribution en énergie des quasiparticules émises par la source. A l'aide de deux sources indépendantes et synchronisées, nous générons deux quasi-particules indiscernables, qui interfèrent sur une lame séparatrice dans un analogue de l'expérience de Hong-Ou-Mandel. La visibilité de ce phénomène est possiblement limité par la décohérence des paquets d'ondes électroniques par interaction avec l'environnement, notamment les autres canaux de bords. En mesurant le couplage capacitif entre deux canaux de bords co-propageant, nous caractérisons les effets de l'interaction coulombienne et mettons en évidence un mode neutre de propagation. Ces expériences constituent les premières implémentations d'expériences d'optique quantique électronique avec des charges uniques, et permettent d'envisager des expériences plus complexes comme la tomographie d'un paquet d'onde mono-électronique
This thesis is devoted to the implementation of quantum optics experiments in a ballistic quantum conductor, with single charge resolution. A mesoscopic capacitor produces on-demand single-electron excitations in the outermost edge channel of quantum Hall effect. We measure current fluctuations after partitioning of excitations on an electronic beamsplitter, in analogy with the Hanbury-Brown & Twiss experiment, so as to unveil neutral excitations (electron/holes pairs) that can accompany the emission of the charge. Thermal excitations in the Fermi sea are then responsible for two-particle interferences that yield information on the energy distribution of the generated quasiparticles. Using two independent and synchronized sources, we generate two indistinguishable quasiparticles that interfere on a beamsplitter as in the Hong-Ou-Mandel experiment. The visibility of this phenomenon could be limited by decoherence of the wavepackets due to interactions with the environment and especially with other co-propagating edge channels. By measuring the capacitive coupling between two co-propagating edge channels, we characterize the effects of Coulomb interaction on propagation and highlight a neutral mode of propagation. These experiments constitute the first implementations of electron quantum optics experiments with single charges. They pave the way to more complex experiments such as the tomography of a mono-electronic wavepacket
Style APA, Harvard, Vancouver, ISO itp.
9

Zhang, Zheshen. "New techniques for quantum communication systems". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42843.

Pełny tekst źródła
Streszczenie:
Although mathematical cryptography has been widely used, its security has only been proven under certain assumptions such as the computational power of opponents. As an alternative, quantum communication, in particular quantum key distribution (QKD) can get around unproven assumptions and achieve unconditional security. However, the key generation rate of practical QKD systems is limited by device imperfections, excess noise from the quantum channel, limited rate of true random-number generation, quantum entanglement preparation, and/or post-processing efficiency. This dissertation contributes to improving the performance of quantum communication systems. First, it proposes a new continuous-variable QKD (CVQKD) protocol that loosens the efficiency requirement on post-processing, a bottleneck for long-distance CVQKD systems. It also demonstrates an experimental implementation of the proposed protocol. To achieve high rates, the CVQKD experiment uses a continuous-wave local oscillator (CWLO). The excess noise caused by guided acoustic-wave Brillioun scattering (GAWBS) is avoided by a frequency-shift scheme, resulting in a 32 dB noise reduction. The statistical distribution of the GAWBS noise is characterized by quantum tomography. Measurements show Gaussian statistics upto 55 dB of dynamical range, which validates the security calculations in the proposed CVQKD protocol. True random numbers are required in quantum and classical cryptography. A second contribution of this thesis is that it experimentally demonstrates an ultrafast quantum random-number generator (QRNG) based on amplified spontaneous emission (ASE). Random numbers are produced by a multi-mode photon counting measurement on ASE light. The performance of the QRNG is analyzed with quantum information theory and verified with NIST standard random-number test. The QRNG experiment demonstrates a random-number generation rate at 20 Gbits/s. Theoretical studies show fundamental limits for such QRNGs. Quantum entanglement produced in nonlinear optical processes can help to increase quantum communication distance. A third contribution is the research on nonlinear optics of graphene, a novel 2D material with unconventional physical properties. Based on a quantum-dynamical model, optical responses of graphene are derived, showing for the first time a link between the complex linear optical conductivity and the quantum decoherence. Nonlinear optical responses, in particular four-wave mixing, is studied for the first time. The theory predicts saturation effects in graphene and relates the saturation threshold to the ultrafast quantum decoherence and carrier relaxation in graphene. For the experimental part, four-wave mixing in graphene is demonstrated. Twin-photon production in graphene is under investigation.
Style APA, Harvard, Vancouver, ISO itp.
10

Liu, Xunmimg. "Nonlinear dynamics in quantum optics /". St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17835.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Quantum optics"

1

Walls, D. F. Quantum optics. Wyd. 2. Berlin: Springer, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Meystre, Pierre. Quantum Optics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Orszag, Miguel. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Orszag, Miguel. Quantum Optics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Walls, D. F., i G. J. Milburn. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79504-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Walls, D. F., i Gerard J. Milburn, red. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-28574-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Garrison, John C. Quantum optics. Oxford: Oxford University Press, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

J, Milburn G., red. Quantum optics. Berlin: Springer-Verlag, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Walls, D. F. Quantum optics. Berlin: Springer, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

1936-, Kujawski Adam, Lewenstein Maciej 1955-, Instytut Fizyki (Polska Akademia Nauk) i International School of Coherent Optics, (6th : 1985 : Ulstron), red. Quantum optics. Warszawa: Polish Academy of Sciences Institute of Physics, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Quantum optics"

1

Yamamoto, Y. "Quantum Optics". W Mesoscopic Electron Transport, 617–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ukai, Ryuji. "Quantum Optics". W Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light, 15–29. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55019-8_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Milburn, Gerard. "Quantum Optics". W Springer Handbook of Lasers and Optics, 1305–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19409-2_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Carmichael, Howard. "Quantum Optics". W Photonics, 77–119. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119009719.ch4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Milburn, Gerard. "Quantum Optics". W Springer Handbook of Lasers and Optics, 1053–78. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30420-5_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Orszag, Miguel. "Quantum Phase". W Quantum Optics, 231–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Orszag, Miguel. "Quantum Trajectories". W Quantum Optics, 249–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Orszag, Miguel. "Quantum Correlations". W Quantum Optics, 401–8. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Orszag, Miguel. "Quantum Phase". W Quantum Optics, 191–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Orszag, Miguel. "Quantum Trajectories". W Quantum Optics, 205–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Quantum optics"

1

Rarity, J. G. "Quantum Technologies." W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctul1.

Pełny tekst źródła
Streszczenie:
Could we send information encoded in single photons possibly exploiting the wave particle duality inherent in quanta? Could we even build arbitrary processors using single quanta to encode bits of information? Within this talk I would hope to introduce you to the area of quantum information which is largely a theoretical preserve at the moment. There are however various experimental in-roads into this area, the most notable being secure key exchange using quantum cryptography.
Style APA, Harvard, Vancouver, ISO itp.
2

FIUTAK, J., i J. MIZERSKI. "QUANTUM OPTICS". W XIII Summer School on Quantum Optics. WORLD SCIENTIFIC, 1986. http://dx.doi.org/10.1142/9789814542357.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mabuchi, Hideo. "Quantum optics and quantum information science". W Optics in Computing. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/oc.2003.othc2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Takeuchi, Shigeki. "Photonic quantum circuits and quantum metrologies". W Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw4c.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Imamoglu, A. "Quantum optics with quantum dots". W 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1547864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Imamoḡlu, A. "Quantum Optics with Quantum Dots". W Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Giesz, Valérian, Niccolo Somaschi, Lorenzo De Santis, Simone Luca Portalupi, Christophe Arnold, Olivier Gazzano, Anna Nowak i in. "Quantum dot based quantum optics". W Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jackson, Deborah J., George M. Hockney i Jon P. Dowling. "High quantum efficiency photodetectors for quantum instruments". W Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.waa3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Atature, Mete. "Quantum Dots as tools for Quantum Technologies". W Frontiers in Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/fio.2012.ftu2d.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Gyongyosi, Laszlo, i Sandor Imre. "Quantum Communication over Partially Degradable Quantum Channels". W Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fm3c.7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Quantum optics"

1

Scully, Marlan O. Quantum Optics Initiative. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2007. http://dx.doi.org/10.21236/ada475607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Scully, Marlan O. Fundamental and Applied Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2003. http://dx.doi.org/10.21236/ada409783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Franson, J. D. Nonclassical Effects in Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, luty 2004. http://dx.doi.org/10.21236/ada420491.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Franson, J. D. Linear Optics Approach to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, październik 2005. http://dx.doi.org/10.21236/ada440858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Franson, J. D. Technology Development for Linear Optics Quantum Computing Program. Fort Belvoir, VA: Defense Technical Information Center, październik 2005. http://dx.doi.org/10.21236/ada441502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Eberly, J. H. Seventh Rochester Conference on Coherence and Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, listopad 1996. http://dx.doi.org/10.21236/ada319112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maj 1992. http://dx.doi.org/10.21236/ada253666.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, luty 1990. http://dx.doi.org/10.21236/ada218772.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Steel, Duncan G. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2002. http://dx.doi.org/10.21236/ada402598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Scully, Marlan O. Laser and Stand-off Spectroscopy Quantum and Statistical Optics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2011. http://dx.doi.org/10.21236/ada534915.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii