Gotowa bibliografia na temat „Quantum Melting”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum Melting”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Quantum Melting"
Agbenyega, Jonathan. "Quantum melting". Materials Today 13, nr 6 (czerwiec 2010): 10. http://dx.doi.org/10.1016/s1369-7021(10)70098-5.
Pełny tekst źródłaBelousov, A. I., i Yu E. Lozovik. "Quantum melting of mesoscopic clusters". Physics of the Solid State 41, nr 10 (październik 1999): 1705–10. http://dx.doi.org/10.1134/1.1131073.
Pełny tekst źródłaChakravarty, Charusita. "Quantum delocalization and cluster melting". Journal of Chemical Physics 103, nr 24 (22.12.1995): 10663–68. http://dx.doi.org/10.1063/1.469852.
Pełny tekst źródłaBurakovsky, Leonid, i Dean L. Preston. "Unified Analytic Melt-Shear Model in the Limit of Quantum Melting". Applied Sciences 12, nr 21 (4.11.2022): 11181. http://dx.doi.org/10.3390/app122111181.
Pełny tekst źródłaBeck, Thomas L., J. D. Doll i David L. Freeman. "The quantum mechanics of cluster melting". Journal of Chemical Physics 90, nr 10 (15.05.1989): 5651–56. http://dx.doi.org/10.1063/1.456687.
Pełny tekst źródłaMarx, D., i P. Nielaba. "Quantum ‘‘melting’’ of orientationally ordered physisorbates". Journal of Chemical Physics 102, nr 11 (15.03.1995): 4538–47. http://dx.doi.org/10.1063/1.469502.
Pełny tekst źródłaTosatti, E., i R. Martoňák. "Rotational melting in displacive quantum paraelectrics". Solid State Communications 92, nr 1-2 (październik 1994): 167–80. http://dx.doi.org/10.1016/0038-1098(94)90870-2.
Pełny tekst źródłaKitamura, Toyoyuki. "A quantum field theory of melting". Physica A: Statistical Mechanics and its Applications 160, nr 2 (październik 1989): 181–94. http://dx.doi.org/10.1016/0378-4371(89)90415-9.
Pełny tekst źródłaAttanasio, C., C. Coccorese, L. Maritato, S. L. Prischepa, M. Salvato, B. Engel i C. M. Falco. "Quantum vortex melting in Nb/CuMn multilayers". Physical Review B 53, nr 3 (15.01.1996): 1087–90. http://dx.doi.org/10.1103/physrevb.53.1087.
Pełny tekst źródłaZyubin, M. V., I. A. Rudnev i V. A. Kashurnikov. "Numerical study of vortex system quantum melting". Physics Letters A 332, nr 5-6 (listopad 2004): 456–60. http://dx.doi.org/10.1016/j.physleta.2004.08.064.
Pełny tekst źródłaRozprawy doktorskie na temat "Quantum Melting"
Smiseth, Jo. "Criticality and novel quantum liquid phases in Ginzburg--Landau theories with compact and non-compact gauge fields". Doctoral thesis, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-583.
Pełny tekst źródłaWe have studied the critical properties of three-dimensional U(1)-symmetric lattice gauge theories. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. This thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication.
Paper I: Critical properties of the 2+1-dimensional compact abelian Higgs model with gauge charge q=2 are studied. We introduce a novel method of computing the third moment M3 of the action which allows us to extract correlation length and specific heat critical exponents ν and α without invoking hyperscaling. Finite-size scaling analysis of M3 yields the ratio (1+α)/ν and 1/ν separately. We find that α and ν vary along the critical line of the theory, which however exhibits a remarkable resilience of Z2 criticality. We conclude that the model is a fixed-line theory, which we propose to characterize the zero temperature quantum phase transition from a Mott-Hubbard insulator to a charge fractionalized insulator in two spatial dimensions.
Paper II: Large scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional compact abelian Higgs model in adjoint representations of the matter field, labeled by an integer q, for q=2,3,4,5. We also study various limiting cases of the model, such as the Zq lattice gauge theory, dual to the 3DZq spin model, and the 3D xy spin model which is dual to the Zq lattice gauge theory in the limit q → ∞. In addition, for benchmark purposes, we study the 2D square lattice 8-vertex model, which is exactly solvable and features non-universal critical exponents. The critical exponents α and ν are calculated from finite size scaling of the third moment of the action, and the method is tested thoroughly on models with known values for these exponents. We have found that for q=3, the three-dimensional compact abelian Higgs model exhibits a second order phase transition line which joins a first order phase transition line at a tricritical point. The results for q=2 in Paper I are reported with a higher lever of detail.
Paper III: This paper is based on a talk by F. S. Nogueira in the Aachen HEP 2003 conference where a review of the results for the compact abelian Higgs model from Paper I and Paper II was presented, as well as the results for the q=1 case studied by F. S. Nogueira, H. Kleinert and A. Sudbø.
Paper IV: We study the effects of a Chern-Simons (CS) term in the phase structure of two different abelian gauge theories in three dimensions. By duality transformations we show how the compact U(1) gauge theory with a CS term for certain values of the CS coupling can be written as a gas of vortex loops interacting through steric repulsion. This theory is known to exhibit a phase transition governed by proliferation of vortex loops. We also employ Monte Carlo simulations to study the non-compact U(1) abelian Higgs model with a CS term. Finite size scaling of the third moment of the action yields critical exponents α and ν that vary continuously with the strength of the CS term, and a comparison with available analytical results is made.
Paper V: The critical properties of N-component Ginzburg-Landau theory are studied in d=2+1 dimensions. The model is dualized to a theory of N vortex fields interacting through a Coulomb and a screened potential. The model with N=2 shows two anomalies in the specific heat. From Monte Carlo simulations we calculate the critical exponents α and ν and the mass of the gauge field. We conclude that one anomaly corresponds to an inverted 3D xy fixed point, while the other corresponds to a 3D xy fixed point. There are N fixed points, namely one corresponding to an inverted 3D xy fixed point, and N-1corresponding to neutral 3D xy fixed points. Applications are briefly discussed.
Paper VI: The phase diagram and critical properties of the N-component London superconductor are studied both analytically and through large-scale Monte-Carlo simulations in d=2+1 dimensions. The model with different bare phase stiffnesses for each flavor is a model of superconductivity which should arise out of metallic phases of light atoms under extreme pressure. A projected mixture of electronic and protonic condensates in liquid metallic hydrogen under extreme pressure is the simplest example, corresponding to N=2 with individually conserved matter fields. We compute critical exponents α and ν for N=2 and N=3. The results from Paper V are presented at a higher level of detail. For the arbitrary N case, there are N fixed points,namely one charged inverted 3D xy fixed point, and N-1 neutral 3D xy fixed points. We explicitly identify one charged vortex mode and N-1 neutral vortex modes. The model for N=2 and equal bare phase stiffnesses corresponds to a field theoretical description of an easy-plane quantum antiferromagnet. In this case, the critical exponents are computed and found to be non 3D xy values. Furthermore, we study the model in an external magnetic field, and find a novel feature, namely N-1 superfluid phases arising out of N charged condensates. In particular, for N=2 we point out the possibility of two novel types of field-induced phase transitions in ordered quantum fluids: i) A phase transition from a superconductor to a superfluid or vice versa, driven by tuning an external magnetic field. This identifies the superconducting phase of liquid metallic hydrogen as a novel quantum fluid. ii) A phase transition corresponding to a quantum fluid analogue of sublattice melting, where a composite field-induced Abrikosov vortex lattice is decomposed and disorders the phases of the constituent condensate with lowest bare phase stiffness. Both transitions belong to the 3D xy universality class.
Paper VII: We consider the vortex superconductor with two individually conserved condensates in a finite magnetic field. The ground state is a lattice of cocentered vortices in both order parameters. We find two novel phase transitions when temperature is increased at fixed magnetic field. i) A "vortex sublattice melting" transition where vortices in the field with lowest phase stiffness ("light vortices") loose cocentricity with the vortices with large phase stiffness ("heavy vortices"), entering a liquid state (the structure factor of the light vortex sublattice vanishes continuously.) This transition is in the 3D xy universality class. ii) A first order melting transition of the lattice of heavy vortices in a liquid of light vortices.
Paper VIII: We report on large-scale Monte Carlo simulations of a novel type of a vortex matter phase transition which should take place in a three dimensional two-component superconductor. We identify the regime where first, at a certain temperature a field-induced lattice of co-centered vortices of both order parameters melts, causing the system to loose superconductivity. In this state the two-gap system retains a broken composite symmetry and we observe that at a higher temperature it undergoes an extra phase transition where the disordered composite one-flux-quantum vortex lines are "ionized" into a "plasma" of constituent fractional flux vortex lines in individual order parameters. This is the hallmark of the superconductor-to-superfluid-to-normal fluid phase transitions projected to occur in e.g. liquid metallic hydrogen.
Chen, Li-Da, i 陳立達. "The melting temperature calculation of silicon bulk and silicon quantum dots by ab-initio molecular dynamics simulation". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/80808645324832064635.
Pełny tekst źródłaСвітлична, Катерина Миколаївна. "S-гетерилмодифіковані похідні ендогенних тіолів: синтез та ідентифікація". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/4202.
Pełny tekst źródłaUA : В роботі 70 сторінок, 5 таблиць, 17 рисунків, було використано 71 літературне джерело, із них 40 іноземною мовою. Об’єкт дослідження – S-заміщені цистеаміну. Предметом дослідження є квантово-хімічні розрахунки, синтез, ідентифікація та дослідження фізико-хімічних властивості S-заміщених цистеаміну. Метою даної роботи є синтез потенційних біорегуляторів – S-заміщених цистеаміну, дослідження їх фізико-хімічних властивостей та ідентифікація даних структур (тонкошарова хроматографія, функціональний аналіз, 1H ЯМР). Методи досліджень та апаратура – теоретичний, розрахунковий, експериментальний, терези, піщана баня, хімічний посуд, прилад для визначення температури плавлення, хроматографічна камера, програмне забезпечення ACDLabs 6.0, ChemOffice 15.0, спектрометр Varian Mercury VX-200 (200 МГц). Новизна роботи полягає в удосконалені методів синтезу отриманих сполук, визначенні основних фізичних констант, таких як температура плавлення, оцінка чистоти синтезованих сполук за допомогою тонкошарової хроматографії та проведені функціонального аналізу. Синтезовані сполуки є перспективними антиоксидантами з протекторними властивостями, також вони є оригінальними building-blocks для подальшої розробки БАР.
EN : 70 pages, 5 tables, 17 figures, 71 references, including 40 foreign language were used in this work. The object of study – S-substituted cysteamine. The subject of the study is quantum-chemical calculations, synthesis, identification and study of the physico-chemical properties of S-substituted cysteamine. The purpose of this work is to synthesize potential bioregulators – S-substituted cysteamine, to investigate their physico-chemical properties and to identify these structures (thin-layer chromatography, functional analysis, 1H NMR). Research methods and equipment – theoretical, estimated, experimental, scales, sand bath, chemical dishes, melting point, chromatographic chamber, ACDLabs 6.0 software, ChemOffice 15.0, Varian Mercury spectrometer VX-200 (200 MHz). The novelty of the work consists in improved methods of synthesis of the obtained compounds, determination of basic physical constants such as melting temperature, evaluation of purity of synthesized compounds by thin-layer chromatography, and functional analysis. The synthesized compounds are promising antioxidants with tread properties, as well as the original building blocks for further development of BAR.
Rath, Pranaya Kishore. "Experimental Investigation of Electrons In and Above Liquid Helium". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5838.
Pełny tekst źródłaINSPIRE, DST India
Książki na temat "Quantum Melting"
Rau, Jochen. Statistical Physics and Thermodynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199595068.001.0001.
Pełny tekst źródłaCzęści książek na temat "Quantum Melting"
Tsiper, E. V., i A. L. Efros. "Quantum Melting on a Lattice and a Delocalization Transition". W Strongly Coupled Coulomb Systems, 483–86. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47086-1_87.
Pełny tekst źródłaBaldini, Edoardo. "Lattice-Mediated Magnetic Order Melting in Multiferroic Mott Insulators". W Nonequilibrium Dynamics of Collective Excitations in Quantum Materials, 249–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77498-5_7.
Pełny tekst źródłaKagan, M. Yu. "Melting-Crystallization Waves on the Phase-Interface Between Quantum Crystal and Superfluid". W Modern trends in Superconductivity and Superfluidity, 79–115. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6961-8_3.
Pełny tekst źródła"Quantum Melting of Hydrogen Clusters". W Handbook of Nanophysics, 193–208. CRC Press, 2010. http://dx.doi.org/10.1201/9781420075557-17.
Pełny tekst źródłaKanhere, D. G., Abhijat Vichare i S. A. Blundell. "MELTING IN FINITE-SIZED SYSTEMS". W Reviews of Modern Quantum Chemistry, 1568–605. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812775702_0052.
Pełny tekst źródła"Step potential, quantum effects and “cold” melting". W Phase Transitions for Beginners, 41–51. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813274181_0004.
Pełny tekst źródłaMoriarty, John A. "High-Temperature Properties, Melting and Phase Diagrams". W Theory and Application of Quantum-Based Interatomic Potentials in Metals and Alloys, 336–81. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198822172.003.0008.
Pełny tekst źródłaTheunissen, M. H., B. Becker i P. H. Kes. "Quantum melting and quantum creep of vortex matter in thin films of a-Nb3Ge". W Series on Directions in Condensed Matter Physics, 78–93. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789812816559_0005.
Pełny tekst źródłaSutton, Adrian P. "Small is different". W Concepts of Materials Science, 81–93. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846839.003.0007.
Pełny tekst źródłaCelik, Sefa, Ali Tugrul Albayrak, Sevim Akyuz i Aysen E. Ozel. "The Importance of Ionic Liquids and Applications on Their Molecular Modeling". W Computational Models for Biomedical Reasoning and Problem Solving, 206–30. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7467-5.ch008.
Pełny tekst źródłaStreszczenia konferencji na temat "Quantum Melting"
Abel, Markus, Markus Dorndorf, Michel Hein i Hans-Jörg Huber. "SIMETAL EAF QUANTUM™ - THE FUTURE APPROACH FOR EFFICIENT SCRAP MELTING". W 43º Seminário de Aciaria - Internacional. São Paulo: Editora Blucher, 2012. http://dx.doi.org/10.5151/2594-5300-20760.
Pełny tekst źródłaHou, De-fu, Zi-qiang Zhang, Hai-cang Ren i Lei Yin. "The subleading order heavy-quark potential from AdS/CFT and meson melting". W QCD@WORK 2012: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2012. http://dx.doi.org/10.1063/1.4763524.
Pełny tekst źródłaGenkov, Kaloyan, Petar Todorov i Stoyan Russev. "Viability of zone melting on a micro scale using a focused electron beam". W International Conference on Quantum, Nonlinear, and Nanophotonics 2019 (ICQNN 2019), redaktorzy Alexander A. Dreischuh, Dragomir N. Neshev, Isabelle Staude i Tony Spassov. SPIE, 2019. http://dx.doi.org/10.1117/12.2555443.
Pełny tekst źródłaENOMOTO, YOSHIHISA, i TAKASHI MITSUDA. "MELTING OF A VORTEX MICROCLUSTER IN A TWO–DIMENSIONAL SUPERCONDUCTING ISLAND". W Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0074.
Pełny tekst źródłaUvarova, A., C. Guguschev i C. Krankel. "Growth and Characterization of High-Melting Sesquioxides for 3 μm Lasers". W 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8871444.
Pełny tekst źródłaFischer, B., A. Gordon i B. Vodonos. "Some physical scenes (melting, freezing and localization) from a birthplace of light pulses (mode-locked lasers)". W 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1313878.
Pełny tekst źródłaFischer, B., A. Cordon i B. Vodonos. "Some physical scenes (melting, freezing and localization) from a birthplace of light pulses (mode-locked lasers)". W 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1313879.
Pełny tekst źródłaKannan, P., A. Choudhary, B. Mills, V. M. Leonard, D. W. Hewak, X. Feng i D. P. Shepherd. "PbSe quantum dots grown in a high-index, low-melting-temperature glass for infrared laser applications". W SPIE OPTO, redaktorzy Michel J. F. Digonnet, Shibin Jiang i J. Christopher Dries. SPIE, 2013. http://dx.doi.org/10.1117/12.2001079.
Pełny tekst źródłaUrano, Chiharu, Kazuaki Yamazawa i Nobu-Hisa Kaneko. "Measurement of Melting Point of Gallium by Johnson Noise Thermometer Using Integrated Quantum Voltage Noise Source". W 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018. http://dx.doi.org/10.1109/cpem.2018.8501236.
Pełny tekst źródłaJi, Pengfei, Mengzhe He, Yiming Rong, Yuwen Zhang i Yong Tang. "Multiscale Investigation of Thickness Dependent Melting Thresholds of Nickel Film Under Femtosecond Laser Heating". W ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86947.
Pełny tekst źródła