Rozprawy doktorskie na temat „Quantum Machine Learning (QML)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 49 najlepszych rozpraw doktorskich naukowych na temat „Quantum Machine Learning (QML)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Pełny tekst źródłaLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
De, Bonis Gianluca. "Rassegna su Quantum Machine Learning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24652/.
Pełny tekst źródłaDu, Yuxuan. "The Power of Quantum Neural Networks in The Noisy Intermediate-Scale Quantum Era". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/24976.
Pełny tekst źródłaMacaluso, Antonio <1990>. "A Novel Framework for Quantum Machine Learning". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9791/2/Antonio_Macaluso_tesi.pdf.
Pełny tekst źródłaRodriguez, Fernandez Carlos Gustavo. "Machine learning quantum error correction codes : learning the toric code /". São Paulo, 2018. http://hdl.handle.net/11449/180319.
Pełny tekst źródłaBanca:Alexandre Reily Rocha
Banca: Juan Felipe Carrasquilla
Resumo: Usamos métodos de aprendizagem supervisionada para estudar a decodificação de erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro, e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e seu tempo de treinamento aumentam com o tamanho do código tórico.
Abstract: We use supervised learning methods to study the error decoding in toric codes ofdifferent sizes. We study multiple error models, and obtain figures of the decoding efficacyas a function of the single qubit error rate. We also comment on how the size of thedecoding neural networks and their training time scales with the size of the toric code
Mestre
TACCHINO, FRANCESCO. "Digital quantum simulations and machine learning on near-term quantum processors". Doctoral thesis, Università degli studi di Pavia, 2020. http://hdl.handle.net/11571/1317093.
Pełny tekst źródłaQuantum mechanics is the gateway towards novel and potentially disruptive approaches to scientific and technical computing. In this thesis we explore, from a number of different perspectives, the effects of such strong relationship between the physical nature of information and the informational side of physical processes, with a focus on the digital quantum computing paradigm. After an extensive introduction to the theory of universal quantum simulation techniques, we review the main achievements in the field and, in parallel, we outline the state of the art of near-term architectures for quantum information processing. We then move on to present novel and scalable procedures for the study of paradigmatic spin models on intermediate-scale noisy quantum processors. Through an innovative combination of quantum algorithms with classical post-processing and error mitigation protocols, we demonstrate in practice the full digital quantum simulation of spin-spin dynamical correlation functions, reporting experimental results obtained on superconducting cloud-accessible IBM Q devices. We also exhibit a practical use-case by successfully reproducing, from quantum computed data, cross section calculations for four-dimensional inelastic neutron scattering, a common tool employed in the analysis of molecular magnetic clusters. The central part of the thesis is dedicated to the exploration of perspective hardware solutions for quantum computing. As it is not yet clear whether the currently dominant platforms, namely trapped ions and superconducting circuits, will eventually allow to reach the final goal of a fully-fledged architecture for general-purpose quantum information processing, the search for alternative technologies is at least as urgent as the improvement of existing ones or the development of new algorithms. After providing an overview of some recent proposals, including hybrid set-ups, we introduce quantum electromechanics as a promising candidate platform for future realizations of digital quantum simulators and we predict competitive performances for an elementary building block featuring nanomechanical qubits integrated within superconducting circuitry. In the final part, we extend the reach of quantum information protocols beyond its traditional areas of application, and we account for the birth and rapid development of Quantum Machine Learning, a discipline aimed at establishing a productive interplay between the parallel revolutions brought about by quantum computing and artificial intelligence. In particular, we describe an original procedure for implementing, on a quantum architecture, the behavior of binary-valued artificial neurons. Formally exact and platform-independent, our data encoding and processing scheme guarantees in principle an exponential memory advantage over classical counterparts and is particularly well suited for pattern and image recognition purposes. We test our algorithm on IBM Q quantum processors, discussing possible training schemes for single nodes and reporting a proof-of-principle demonstration of a 2-layer, 3-neuron feed-forward neural network computation run on 7 active qubits. The latter is, in terms of the total size of the quantum register, one of the largest quantum neural network computation reported to date on real quantum hardware.
Lukac, Martin. "Quantum Inductive Learning and Quantum Logic Synthesis". PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/2319.
Pełny tekst źródłaOrazi, Filippo. "Quantum machine learning: development and evaluation of the Multiple Aggregator Quantum Algorithm". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25062/.
Pełny tekst źródłaCangini, Nicolò. "Quantum Supervised Learning: Algoritmi e implementazione". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17694/.
Pełny tekst źródłaGupta, Riddhi Swaroop. "Robotic control and machine learning for the characterization and control of qubits". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23519.
Pełny tekst źródłaTingley, Michael Alan. "Towards the Quantum Machine: Using Scalable Machine Learning Methods to Predict Photovoltaic Efficacy of Organic Molecules". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12553271.
Pełny tekst źródłaSriarunothai, Theeraphot [Verfasser]. "Multi-qubit gates and quantum-enhanced deliberation for machine learning using a trapped-ion quantum processor / Theeraphot Sriarunothai". Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1177366320/34.
Pełny tekst źródłaMills, Matthew. "A multipolar polarisable force field method from quantum chemical topology and machine learning". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/a-multipolar-polarisable-force-field-method-from-quantum-chemical-topology-and-machine-learning(3fb1e55c-0d4c-4d11-932b-71706bdbeb8b).html.
Pełny tekst źródłaWu, Jiaxin. "Topics in Cold Atoms Related to Quantum Information Processing and A Machine Learning Approach to Condensed Matter Physics". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156320039156199.
Pełny tekst źródłaBauer, Carsten [Verfasser], Simon [Gutachter] Trebst i Achim [Gutachter] Rosch. "Simulating and machine learning quantum criticality in a nearly antiferromagnetic metal / Carsten Bauer ; Gutachter: Simon Trebst, Achim Rosch". Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1228071888/34.
Pełny tekst źródłaLi, Zhenwei. "On-the-fly machine learning of quantum mechanical forces and its potential applications for large scale molecular dynamics". Thesis, King's College London (University of London), 2014. http://kclpure.kcl.ac.uk/portal/en/theses/onthefly-machine-learning-of-quantum-mechanical-forces-and-its-potential-applications-for-large-scale-molecular-dynamics(2a2f33a6-fa0c-44e3-8689-f4cf3f1c9198).html.
Pełny tekst źródłaZhang, Wei. "Many-Body Localization in Disordered Quantum Spin Chain and Finite-Temperature Gutzwiller Projection in Two-Dimensional Hubbard Model:". Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108695.
Pełny tekst źródłaThe transition between many-body localized states and the delocalized thermal states is an eigenstate phase transition at finite energy density outside the scope of conventional quantum statistical mechanics. We apply support vector machine (SVM) to study the phase transition between many-body localized and thermal phases in a disordered quantum Ising chain in a transverse external field. The many-body eigenstate energy E is bounded by a bandwidth W=Eₘₐₓ-Eₘᵢₙ. The transition takes place on a phase diagram spanned by the energy density ϵ=2(Eₘₐₓ-Eₘᵢₙ)/W and the disorder strength ẟJ of the spin interaction uniformly distributed within [-ẟJ, ẟJ], formally parallel to the mobility edge in Anderson localization. In our study we use the labeled probability density of eigenstate wavefunctions belonging to the deeply localized and thermal regimes at two different energy densities (ϵ's) as the training set, i.e., providing labeled data at four corners of the phase diagram. Then we employ the trained SVM to predict the whole phase diagram. The obtained phase boundary qualitatively agrees with previous work using entanglement entropy to characterize these two phases. We further analyze the decision function of the SVM to interpret its physical meaning and find that it is analogous to the inverse participation ratio in configuration space. Our findings demonstrate the ability of the SVM to capture potential quantities that may characterize the many-body localization phase transition. To further investigate the properties of the transition, we study the behavior of the entanglement entropy of a subsystem of size L_A in a system of size L > L_A near the critical regime of the many-body localization transition. The many-body eigenstates are obtained by exact diagonalization of a disordered quantum spin chain under twisted boundary conditions to reduce the finite-size effect. We present a scaling theory based on the assumption that the transition is continuous and use the subsystem size L_A/ξ as the scaling variable, where ξ is the correlation length. We show that this scaling theory provides an effective description of the critical behavior and that the entanglement entropy follows the thermal volume law at the transition point. We extract the critical exponent governing the divergence of ξ upon approaching the transition point. We again study the participation entropy in the spin-basis of the domain wall excitations and show that the transition point and the critical exponent agree with those obtained from finite size scaling of the entanglement entropy. Our findings suggest that the many-body localization transition in this model is continuous and describable as a localization transition in the many-body configuration space. Besides the many-body localization transition driven by disorder, We also study the Coulomb repulsion and temperature driving phase transitions. We apply a finite-temperature Gutzwiller projection to two-dimensional Hubbard model by constructing a "Gutzwiller-type" density matrix operator to approximate the real interacting density matrix, which provides the upper bound of free energy of the system. We firstly investigate half filled Hubbard model without magnetism and obtain the phase diagram. The transition line is of first order at finite temperature, ending at 2 second order points, which shares qualitative agreement with dynamic mean field results. We derive the analytic form of the free energy and therefor the equation of states, which benefits the understanding of the different phases. We later extend our approach to take anti-ferromagnetic order into account. We determine the Neel temperature and explore its interesting behavior when varying the Coulomb repulsion
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Mori, Yuto. "Path optimization with neural network for sign problem in quantum field theories". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263466.
Pełny tekst źródłaFiderer, Lukas J. [Verfasser], i Daniel [Akademischer Betreuer] Braun. "New Concepts in Quantum Metrology : Dynamics, Machine Learning, and Bounds on Measurement Precision / Lukas J. Fiderer ; Betreuer: Daniel Braun". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1212025334/34.
Pełny tekst źródłaEisenhart, Andrew. "Quantum Simulations of Specific Ion Effects in Organic Solvents". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1626356392775228.
Pełny tekst źródłaPérez, Salinas Adrián. "Algorithmic strategies for seizing quantum computing". Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/673255.
Pełny tekst źródłaLa computación cuántica es una tecnología emergente con potencial para resolver problemas hoy impracticables. Para ello son necesarios ordenadores capaces de mantener sistemas cuánticos y controlarlos con precisión. Sin embargo, construir estos ordenadores es complejo y a corto plazo solo habrá ordenadores pequeños afectados por el ruido y sujetos a ruido (NISQ). Para aprovechar los ordenadores NISQ se exploran algoritmos que requieran pocos recursos cuánticos mientras proporcionan soluciones aproximadas a los problemas que enfrentan. En esta tesis se estudian dos propuestas para algoritmos NISQ: re-uploading y unary. Cada estrategia busca tomar ventaja de diferentes características de la computación cuántica para superar diferentes obstáculos. Ambas estrategias son generales y aplicables en diversos escenarios. En primer lugar, re-uploading está diseñado como un puente entre la computación cuántica y el aprendizaje automático (Machine Learning). Aunque no es el primer intento de aplicar la cuántica al aprendizaje automático, re-uploading tiene ciertas características que lo distinguen de otros métodos. En concreto, re-uploading consiste en introducir datos en un algoritmo cuántico en diferentes puntos a lo largo del proceso. Junto a los datos se utilizan también parámetros optimizables clásicamente que permiten al circuito aprender cualquier comportamiento. Los resultados mejoran cuantas más veces se introducen los datos. El re-uploading cuenta con teoremas matemáticos que sustentan sus capacidades, y ha sido comprobado con éxito en diferentes situaciones tanto simuladas como experimentales. La segunda estrategia algorítmica es unary. Consiste en describir los problemas utilizando solo parte del espacio de computación disponible dentro del ordenador. Así, las capacidades computacionales del ordenador no son óptimas, pero a cambio las operaciones necesarias para una cierta tarea se simplifican. Los resultados obtenidos son resistentes al ruido, y mantienen su significado, y se produce una compensación entre eficiencia y resistencia a errores. Los ordenadores NISQ se ven beneficiados de esta situación para problemas pequeños. En esta tesis, unary se utiliza para resolver un problema tíıpico de finanzas, incluso obteniendo ventajas cuánticas en un problema aplicable al mundo real. Con esta tesis se espera contribuir al crecimiento de los algoritmos disponibles para ordenadores cuánticos NISQ y allanar el camino para las tecnologías venideras.
Maxwell, Peter. "FFLUX : towards a force field based on interacting quantum atoms and kriging". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/fflux-towards-a-force-field-based-on-interacting-quantum-atoms-and-kriging(72a8462a-6907-4f3d-82da-4c182e5a644d).html.
Pełny tekst źródłaÖsterberg, Viktor. "Using Machine Learning to Develop a Quantum-Accurate Inter-Atomic Potential for Large Scale Molecular Dynamics Simulations of Iron under Earth’s Core Conditions". Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298848.
Pełny tekst źródłaMätningar av järns smälttemperatur under påfrestningar jämförbara med desom tros gälla i jordens kärna överensstämmer ej. För att försöka bestämma stabiliteten av relevanta gitter krävs simulationer av enorma mängder partiklar. I denna tes tränas en maskininlärd modell att återge resultat från Täthetsfunktionalteori. Olika maskininlärningsmodeller jämförs. Den tränade modellen används sedan i Molekyldynamik-simulationer av relevanta gitter som är förstora för Täthetsfunktionalteori.
Zauleck, Julius Philipp Paul [Verfasser], i Regina de [Akademischer Betreuer] Vivie-Riedle. "Improving grid based quantum dynamics : from the inclusion of solvents to the utilization of machine learning / Julius Philipp Paul Zauleck ; Betreuer: Regina de Vivie-Riedle". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1151818461/34.
Pełny tekst źródłaLinn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.
Pełny tekst źródłaSlumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
Glasser, Ivan [Verfasser], Ignacio [Akademischer Betreuer] Cirac, Nora [Gutachter] Brambilla i Ignacio [Gutachter] Cirac. "Tensor networks, conformal fields and machine learning: applications in the description of quantum many-body systems / Ivan Glasser ; Gutachter: Nora Brambilla, Ignacio Cirac ; Betreuer: Ignacio Cirac". München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1173899057/34.
Pełny tekst źródłaPronobis, Wiktor Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] [Müller, Alexandre [Gutachter] Tkatchenko i Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller". Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Pełny tekst źródłaPronobis, Wiktor [Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] Müller, Alexandre [Gutachter] Tkatchenko i Manfred [Gutachter] Opper. "Towards more efficient and performant computations in quantum chemistry with machine learning / Wiktor Pronobis ; Gutachter: Klaus-Robert Müller, Alexandre Tkatchenko, Manfred Opper ; Betreuer: Klaus-Robert Müller". Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1208764470/34.
Pełny tekst źródłaAugust, Moritz [Verfasser], Thomas [Akademischer Betreuer] Huckle, José Miguel [Gutachter] Hernández-Lobato, Steffen J. [Gutachter] Glaser i Thomas [Gutachter] Huckle. "Tensor networks and machine learning for approximating and optimizing functions in quantum physics / Moritz August ; Gutachter: José Miguel Hernández-Lobato, Steffen J. Glaser, Thomas Huckle ; Betreuer: Thomas Huckle". München : Universitätsbibliothek der TU München, 2018. http://d-nb.info/1175091804/34.
Pełny tekst źródłaPerea, Ospina Jose Dario [Verfasser], Salvador León [Akademischer Betreuer] Cabanillas i Christoph J. [Gutachter] Brabec. "Solubility and Miscibility of Organic Semiconductors for Efficient and Stable Organic Solar Cells Investigated via Machine Learning and Quantum Chemistry Methods / Jose Dario Perea Ospina ; Gutachter: Christoph J. Brabec ; Betreuer: Salvador León Cabanillas". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1184575215/34.
Pełny tekst źródłaThéveniaut, Hugo. "Méthodes d'apprentissage automatique et phases quantiques de la matière". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30228.
Pełny tekst źródłaMy PhD thesis presents three applications of machine learning to condensed matter theory. Firstly, I will explain how the problem of detecting phase transitions can be rephrased as an image classification task, paving the way to the automatic mapping of phase diagrams. I tested the reliability of this approach and showed its limits for models exhibiting a many-body localized phase in 1 and 2 dimensions. Secondly, I will introduce a variational representation of quantum many-body ground-states in the form of neural-networks and show our results on a constrained model of hardcore bosons in 2d using variational and projection methods. In particular, we confirmed the phase diagram obtained independently earlier and extends its validity to larger system sizes. Moreover we also established the ability of neural-network quantum states to approximate accurately solid and liquid bosonic phases of matter. Finally, I will present a new approach to quantum error correction based on the same techniques used to conceive the best Go game engine. We showed that efficient correction strategies can be uncovered with evolutionary optimization algorithms, competitive with gradient-based optimization techniques. In particular, we found that shallow neural-networks are competitive with deep neural-networks
Hoffmann, Guillaume. "Mise au point de nouveaux descripteurs théoriques pour la réactivité chimique Can molecular and atomic descriptors predict the electrophilicity of Michael acceptors? On the influence of dynamical effects on reactivity descriptors Predicting experimental electrophilicities from quantum and topological descriptors : a machine learning approach Electrophilicity indices and halogen bonds : some new alternatives to the molecular electrostatic potential". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR042.
Pełny tekst źródłaThe study of global, local and non-local reactivity descriptors of a reactive system is of paramount importance in order to understand the reactivity of all chemical processes during a reaction. The goal of this thesis was then to develop new reactivity descriptors, as well as prediction models based on them, in order to study chemical reactivity. The main theoretical methods used were the Conceptual Density Functional Theory (CDFT) and Quantum Theory of “Atoms in Molecules” (QTAIM), which are both based on electron density. Our field of study is mainly within the framework of the Mayr experimental scale, which allows, through kinetic measurements a classification of molecules in order of reactivity. In the first part, great advances were made during this thesis with respect to the theoretical prediction of experimental electrophilicity of Michael acceptors. Then in a second step, we looked at the application of reactivity descriptors on the chemical bond, and in particular the halogen bond. Finally, a part of synthesis carried out during the course of this thesis is presented, by proposing a new way of synthesis of vinylogous iminium cations
Leelar, Bhawani Shankar. "Machine Learning Algorithms Using Classical And Quantum Photonics". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4303.
Pełny tekst źródłaPipicelli, Claudio. "Quantum Machine Learning: A Comparison Between Quantum and Classical Support Vector Machine". Tesi di dottorato, 2020. http://www.fedoa.unina.it/13259/1/PhDThesisPipicelliFinal.pdf.
Pełny tekst źródłaTranter, Aaron. "Machine learning for quantum and complex systems". Phd thesis, 2021. http://hdl.handle.net/1885/220395.
Pełny tekst źródłaBuffoni, Lorenzo. "Machine learning applications in science". Doctoral thesis, 2021. http://hdl.handle.net/2158/1227616.
Pełny tekst źródłaHuang, Yufeng. "Computational Heterogeneous Electrochemistry – From Quantum Mechanics to Machine Learning". Thesis, 2019. https://thesis.library.caltech.edu/11328/13/Yufeng_thesis_2019.02.11.pdf.
Pełny tekst źródłaBecause of coulomb interactions and complex surface morphologies, rigorous methods for heterogeneous electrochemical catalysis were not well-established. Thus, for different types of electrochemical systems, a specific strategy must be adapted. In this thesis, we first used the cluster model to study the chemistry on a 1D chain of MoS2 edges. Then, a rigorous grand canonical potential kinetics (GCP-K) method was developed for general crystalline systems. Starting from quantum mechanical calculations, the method gave rise to a different picture from the traditional description given by the Butler-Volmer kinetics. Next, we studied the chemical selectivity of CO2 reduction on polycrystalline copper nanoparticles. Because of the complexity of the reaction sites, we combined the reactive force field, density functional theory, and machine learning method to predict the reactive sites on 20,000 sites on a roughly 200,000-atom nanoparticle. Such a strategy opens up new way to understand chemistries on a much wider range of complex structures that were impossible to study theoretically. Lastly, we formulated a machine learning force field strategy using atomic energies for amorphous systems. We have shown that such a method can be used to reproduce quantum mechanical accuracies for molecular dynamics. This method will enable the accurate study of the dynamics of heterogeneous systems during electrochemical reactions. In summary, we have developed quantum chemical methods and machine learning strategies to reformulate rigorous ways to study a wide range of heterogeneous electrochemical catalysts.
"Machine learning for optical communications, nonlinear optics, and quantum optics". Tulane University, 2020.
Znajdź pełny tekst źródła"Classical and quantum data sketching with applications in communication complexity and machine learning". 2014. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1291567.
Pełny tekst źródłaThesis Ph.D. Chinese University of Hong Kong 2014.
Includes bibliographical references (leaves 163-188).
Abstracts also in Chinese.
Title from PDF title page (viewed on 25, October, 2016).
"Control of classical & quantum multispatial modes of light for quantum networks through nonlinear optics and machine learning". Tulane University, 2020.
Znajdź pełny tekst źródłaWith the advent of lasers the spatial shape of paraxial light also became an avenue for information processing and transfer applications. The light sources that support multiple of these spatial modes as separate, multiplexed information channels are readily used through classical optical implementations such as free-space optical communication, and to enhance the capacity of these channels. Recently, the hot atomic vapour based non-linear optical systems showed promise for the usage of paraxial multiple spatial modes of light for quantum information applications such as quantum communication, quantum networking, quantum computation and various other quantum technologies. In this dissertation, we use analytical, numerical, statistical and experimental techniques to model the propagation of multi-spatial light through various classical and non-linear systems to be able to steer, optimize and control the quantum states generated for quantum technologies applications. In the first chapter, we give a general introduction to classical (both linear & non-linear) and quantum (both linear \& non-linear) optical systems we are going to analyze. In the second chapter, we use a numerical, Fourier transform based beam propagation technique to examine the self-healing of a generic beam that is generated through an atomic process. In the third chapter, we analyzed our hot atomic vapour four-wave mixing experiment that uses a special type of multiple paraxial spatial mode to drive the non-linear optical process through numerical modeling of Fraunhofer diffraction. In the fourth chapter, we devise a coherent, analytically and quantum mechanically motivated beam propagation method based on decomposing the paraxial beam into its constituent multiple spatial modes. We calibrate this method by using the numerical, experimental and theoretical results of the previous chapters to model how the multiple spatial modes propagate through spatial masks that represent apertures, obstructions, atmospheric turbulence. In the fifth chapter, we extend the beam decomposition formalism into semi-classical and full quantum mechanical optical systems to model seeded hot-atomic vapour four-wave mixing experiments. We again calibrate our numerical models of intensity difference squeezing using the previous experimental results. Next, we use these calibrated models to devise a scheme to optimally generate multi-mode squeezed states. Lastly, in the sixth chapter, we turn our attention into estimating the quantum state of discrete variable, polarization qubit systems using machine learning and various other stochastic techniques. We improve these well studied systems to detect the quantum states in real time, in the presence of noise, and in the absence of various measurements using machine learning. We study these discrete variable, polarization qubit systems both as a gateway and a complement to study the tomographic reconstruction of continuous variable quantum optical systems of the previous chapters, in order to achieve our general goal of having a general estimation, steering and control methodology for quantum networking applications.
1
ONUR DANACI
Mengoni, Riccardo. "Quantum Approaches to Data Science and Data Analytics". Doctoral thesis, 2020. http://hdl.handle.net/11562/1018231.
Pełny tekst źródłaFu, chien wei, i 傅建維. "Using quantum chemistry, molecular simulation and machine learning techniques to study the enzymatic mechanism for several enzymes". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/j556k8.
Pełny tekst źródła國立清華大學
分子醫學研究所
103
Chapter I: Site of metabolism prediction for FMO enzymes via machine learning and condensed Fukui function The flavin-containing monooxygenase (FMO) catalyzes xenobiotics with soft nucleophiles and also plays an important role in drug metabolism in Phase I enzymes. The site of metabolism (SOM) refers to the place where the reaction of metabolism occurs in a molecule. Identification of SOMs of a compound is not usually a low-cost task in drug discovery. Thus, a silico method to predict site of metabolism (SOMs) of FMOs would provide medical chemists information of SOMs before experiments. In this work, we developed a machine learning model combining quantum features (condensed Fukui function) and circular fingerprints to predict potential SOMs in a molecule. The final model via SVM was easily interpreted with only five features. In the training set with 10 CV showed an area under curve (AUC) value of ROC curve, 0.889, and the value of MCC,0.767. In the external validation, AUC value of the model was 0.801 and the accuracy (MCC) was 0.611. These showed the predictive power of our model and we wish such a research to assist medical chemists in the assessment of FMO metabolism at the preclinical stage of drug discovery. Chapter II: Interaction between Trehalose and MTHase from Sulfolobus solfataricus studied by theoretical computation and site-directed mutagenesis Maltooligosyltrehalose trehalohydrolase (MTHase) catalyzes the release of trehalose by cleaving the α-1,4-glucosidic linkage next to the α-1,1-linked terminal disaccharide of maltooligosyltrehalose. Computer simulation using the hydrogen bond analysis, free energy decomposition, and computational alanine scanning were employed to investigate the interaction between maltooligosyltrehalose and the enzyme. The same residues that were chosen for theoretical investigation were also studied by site-directed mutagenesis and enzyme kinetic analysis. The importance of residues determined either experimentally or computed theoretically were in good accord with each other. It was found that residues Y155, D156, and W218 of subsites -2 and -3 of the enzyme might play an important role in interacting with the ligand. The theoretically constructed structure of the enzyme-ligand complex was further validated through an ab initio quantum chemical calculation using the Gaussian09 package. The activation energy computed from this latter study was very similar to those reported in literatures for the same type of hydrolysis reactions. Chapter III: A Theoretical Study on the Alkaline Hydrolysis of Methyl Thioacetate in Aqueous Solution A base catalyzed hydrolysis reaction of thiolester has been studied in both gas and solution phases using two ab initio quantum mechanics calculations such as Gaussian09 and CPMD. The free energy surface along the reaction path is also constructed using a configuration sampling technique namely the metadynamics method. While there are two different reaction paths obtained for the potential profile of the base-catalyzed hydrolysis reaction for thiolester in gas phase, a triple-well reaction path is computed for the reaction in solution phase by both two quantum mechanics calculations. Unlike a SN2 mechanism (a concerted mechanism) found for the gas-phase reaction, a nucleophilic attack from the hydroxide ion on the carbonyl carbon to yield a tetrahedral intermediate (a stepwise mechanism) is observed for the solution phase reaction. Moreover, the energy profiles computed by these two theoretical calculations are found to be well comparable with those determined experimentally.
Slatyer, Harry James. "Multi-parameter optimisation of quantum optical systems". Phd thesis, 2018. http://hdl.handle.net/1885/146120.
Pełny tekst źródłaSwann, Ellen Therese. "Development and application of statistical and quantum mechanical methods for modelling molecular ensembles". Phd thesis, 2018. http://hdl.handle.net/1885/142784.
Pełny tekst źródłaHughes, Zak E., E. Ren, J. C. R. Thacker, B. C. B. Symons, A. F. Silva i P. L. A. Popelier. "A FFLUX water model: flexible, polarizable and with a multipolar description of electrostatics". 2019. http://hdl.handle.net/10454/17932.
Pełny tekst źródłaKey to progress in molecular simulation is the development of advanced models that go beyond the limitations of traditional force fields that employ a fixed, point charge‐based description of electrostatics. Taking water as an example system, the FFLUX framework is shown capable of producing models that are flexible, polarizable and have a multipolar description of the electrostatics. The kriging machine‐learning methods used in FFLUX are able to reproduce the intramolecular potential energy surface and multipole moments of a single water molecule with chemical accuracy using as few as 50 training configurations. Molecular dynamics simulations of water clusters (25–216 molecules) using the new FFLUX model reveal that incorporating charge‐quadrupole, dipole–dipole, and quadrupole–charge interactions into the description of the electrostatics results in significant changes to the intermolecular structuring of the water molecules.
EPSRC. Grant Number: K005472
MARCUCCI, GIULIA. "Complex extreme nonlinear waves: classical and quantum theory for new computing models". Doctoral thesis, 2020. http://hdl.handle.net/11573/1353250.
Pełny tekst źródłaThacker, J. C. R., A. L. Wilson, Zak E. Hughes, M. J. Burn, P. I. Maxwell i P. L. A. Popelier. "Towards the simulation of biomolecules: optimisation of peptide-capped glycine using FFLUX". 2018. http://hdl.handle.net/10454/15726.
Pełny tekst źródłaThe optimisation of a peptide-capped glycine using the novel force field FFLUX is presented. FFLUX is a force field based on the machine-learning method kriging and the topological energy partitioning method called Interacting Quantum Atoms. FFLUX has a completely different architecture to that of traditional force fields, avoiding (harmonic) potentials for bonded, valence and torsion angles. In this study, FFLUX performs an optimisation on a glycine molecule and successfully recovers the target density-functional theory energy with an error of 0.89 ± 0.03 kJ mol−1. It also recovers the structure of the global minimum with a root-mean-squared deviation of 0.05 Å (excluding hydrogen atoms). We also show that the geometry of the intra-molecular hydrogen bond in glycine is recovered accurately.
EPSRC Established Career Fellowship [grant number EP/K005472]
(9674882), Sayan Basak. "Hysteresis and Pattern Formation in Electronic Phase Transitions in Quantum Materials". Thesis, 2020.
Znajdź pełny tekst źródłaLamarre, Aldo. "Apprentissage de circuits quantiques par descente de gradient classique". Thesis, 2020. http://hdl.handle.net/1866/24322.
Pełny tekst źródłaWe present a new learning algorithm for quantum circuits based on gradient descent. Since this subject unifies two areas of research, we explain each field for people working in the other domain. Consequently, we begin by introducing quantum computing and quantum circuits to machine learning specialists, followed by an introduction of machine learning to quantum computing specialists. To give context and motivate our results we then give a light literature review on quantum machine learning. After this, we present our model, its algorithms and its variants, then discuss our currently achieved empirical results. Finally, we criticize our models by giving extensions and future work directions. These last two parts are our main results. They can be found in chapter 4 and 5 respectively. Our code which helped obtain these results can be found on github at this link : https://github.com/ AldoLamarre/quantumcircuitlearning.