Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum Hall regime.

Artykuły w czasopismach na temat „Quantum Hall regime”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum Hall regime”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Asano, Kenichi, i Tsuneya Ando. "Photoluminescence in quantum Hall regime:". Physica B: Condensed Matter 249-251 (czerwiec 1998): 549–52. http://dx.doi.org/10.1016/s0921-4526(98)00183-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BUHMANN, HARTMUT. "SPIN HALL EFFECTS IN HgTe QUANTUM WELL STRUCTURES". International Journal of Modern Physics B 23, nr 12n13 (20.05.2009): 2551–55. http://dx.doi.org/10.1142/s0217979209061974.

Pełny tekst źródła
Streszczenie:
Due to a strong spin orbit interaction HgTe quantum well structures exhibit an unusual subband structure ordering which leads to some remarkable transport properties depending on the actual carrier density. Especially for quantum wells with an inverted band structure ordering, a strong Rashba-type spin orbit splitting gives rise to a strong spin Hall effect in the metallic regime and in the bulk insulating regime spin polarized edge channel transport leads to the formation of the quantum spin Hall effect. Gated quantum well structures have been used to explore these, the metallic and insulating, transport regimes experimentally.
Style APA, Harvard, Vancouver, ISO itp.
3

Suzuki, Kenji, i Yoshiyuki Ono. "Orbital Magnetization in Quantum Hall Regime". Journal of the Physical Society of Japan 66, nr 11 (15.11.1997): 3536–42. http://dx.doi.org/10.1143/jpsj.66.3536.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Amet, F., C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon i in. "Supercurrent in the quantum Hall regime". Science 352, nr 6288 (19.05.2016): 966–69. http://dx.doi.org/10.1126/science.aad6203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kramer, Bernhard, Stefan Kettemann i Tomi Ohtsuki. "Localization in the quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 20, nr 1-2 (grudzień 2003): 172–87. http://dx.doi.org/10.1016/j.physe.2003.09.034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Aoki, Hideo. "Localisation in the quantum hall regime". Surface Science 196, nr 1-3 (styczeń 1988): 107–19. http://dx.doi.org/10.1016/0039-6028(88)90672-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pruisken, A. M. M. "Delocalization in the quantum Hall regime". Physics Reports 184, nr 2-4 (grudzień 1989): 213–17. http://dx.doi.org/10.1016/0370-1573(89)90040-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

He, Mengyun, Yu Huang, Huimin Sun, Yu Fu, Peng Zhang, Chenbo Zhao, Kang L. Wang, Guoqiang Yu i Qing Lin He. "Quantum anomalous Hall interferometer". Journal of Applied Physics 133, nr 8 (28.02.2023): 084401. http://dx.doi.org/10.1063/5.0140086.

Pełny tekst źródła
Streszczenie:
Electronic interferometries in integer and fractional quantum Hall regimes have unfolded the coherence, correlation, and statistical properties of interfering constituents. This is addressed by investigating the roles played by the Aharonov–Bohm effect and Coulomb interactions on the oscillations of transmission/reflection. Here, we construct magnetic interferometers using Cr-doped (Bi,Sb)2Te3 films and demonstrate the electronic interferometry using chiral edge states in the quantum anomalous Hall regime. By controlling the extent of edge coupling and the amount of threading magnetic flux, distinct interfering patterns were observed, which highlight the interplay between the Coulomb interactions and Aharonov–Bohm interference by edge states. The observed interference is likely to exhibit a long-range coherence and robustness against thermal smearing probably owing to the long-range magnetic order. Our interferometer establishes a platform for (quasi)particle interference and topological qubits.
Style APA, Harvard, Vancouver, ISO itp.
9

Shikin, V. B. "Inhomogeneous Hall-geometry sample in the quantum Hall regime". Journal of Experimental and Theoretical Physics Letters 73, nr 5 (marzec 2001): 246–49. http://dx.doi.org/10.1134/1.1371063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

ISHIKAWA, K., T. AOYAMA, Y. ISHIZUKA i N. MAEDA. "FIELD THEORY OF ANISOTROPIC QUANTUM HALL GAS: METROLOGY AND A NOVEL QUANTUM HALL REGIME". International Journal of Modern Physics B 17, nr 27 (30.10.2003): 4765–818. http://dx.doi.org/10.1142/s0217979203023112.

Pełny tekst źródła
Streszczenie:
The von Neumann lattice representation is a convenient representation for studying several intriguing physics of quantum Hall systems. In this formalism, electrons are mapped to lattice fermions. A topological invariant expression of the Hall conductance is derived and is used for the proof of the integer quantum Hall effect in the realistic situation. Anisotropic quantum Hall gas is investigated based on the Hartree–Fock approximation in the same formalism. Thermodynamic properties, transport properties, and unusual response under external modulations are found. Implications for the integer quantum Hall effect in the finite systems are also studied and a new quantum Hall regime with non-zero longitudinal resistance is shown to exist.
Style APA, Harvard, Vancouver, ISO itp.
11

Nicopoulos, V. Nikos, i S. A. Trugman. "Complex quantum dynamics in the integer quantum Hall regime". Physical Review B 45, nr 19 (15.05.1992): 11004–15. http://dx.doi.org/10.1103/physrevb.45.11004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kinaret, Jari M. "A quantum dot in the fractional quantum Hall regime". Physica B: Condensed Matter 189, nr 1-4 (czerwiec 1993): 142–46. http://dx.doi.org/10.1016/0921-4526(93)90155-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Aoki, Hideo. "Double quantum dots in the fractional quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 1, nr 1-4 (styczeń 1997): 198–203. http://dx.doi.org/10.1016/s1386-9477(97)00043-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kasner, Marcus. "Electronic correlation in the quantum Hall regime". Annalen der Physik 514, nr 3 (29.01.2002): 175–252. http://dx.doi.org/10.1002/andp.20025140301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

MacDonald, A. H., E. H. Rezayi i David Keller. "Photoluminescence in the fractional quantum Hall regime". Physical Review Letters 68, nr 12 (23.03.1992): 1939–42. http://dx.doi.org/10.1103/physrevlett.68.1939.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Schüller, C., K. B. Broocks, P. Schröter, C. Heyn, D. Heitmann, M. Bichler, W. Wegscheider, V. M. Apalkov i T. Chakraborty. "Charged Excitons in the Quantum Hall Regime". Acta Physica Polonica A 106, nr 3 (wrzesień 2004): 341–53. http://dx.doi.org/10.12693/aphyspola.106.341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

MacDonald, A. H. "Spin Bottlenecks in the Quantum Hall Regime". Physical Review Letters 83, nr 16 (18.10.1999): 3262–65. http://dx.doi.org/10.1103/physrevlett.83.3262.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Fromer, N. A., C. Schüller, D. S. Chemla, T. V. Shahbazyan, I. E. Perakis, K. Maranowski i A. C. Gossard. "Electronic Dephasing in the Quantum Hall Regime". Physical Review Letters 83, nr 22 (29.11.1999): 4646–49. http://dx.doi.org/10.1103/physrevlett.83.4646.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Okulov, V. I., E. A. Pamyatnykh i A. T. Lonchakov. "Thermodynamic anomalous Hall effect: The quantum regime". Low Temperature Physics 40, nr 11 (listopad 2014): 1032–34. http://dx.doi.org/10.1063/1.4901991.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Main, P. C., A. K. Geim, H. A. Carmona, C. V. Brown, T. J. Foster, R. Taboryski i P. E. Lindelof. "Resistance fluctuations in the quantum Hall regime". Physical Review B 50, nr 7 (15.08.1994): 4450–55. http://dx.doi.org/10.1103/physrevb.50.4450.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Jain, J. K. "Composite Fermions in the Quantum Hall Regime". Science 266, nr 5188 (18.11.1994): 1199–202. http://dx.doi.org/10.1126/science.266.5188.1199.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Russell, P. A., F. F. Ouali, N. P. Hewett i L. J. Challis. "Power dissipation in the quantum Hall regime". Surface Science 229, nr 1-3 (kwiecień 1990): 54–56. http://dx.doi.org/10.1016/0039-6028(90)90831-r.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Zheng, H. Z., K. K. Choi, D. C. Tsui i G. Weimann. "Size effect in the quantum Hall regime". Surface Science Letters 170, nr 1-2 (kwiecień 1986): A229. http://dx.doi.org/10.1016/0167-2584(86)90553-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nielsen, Hans. "Magnetoresistance oscillations in the quantum Hall regime". Physica B: Condensed Matter 175, nr 1-3 (grudzień 1991): 231–34. http://dx.doi.org/10.1016/0921-4526(91)90718-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bhatt, R. N., i Wan Xin. "Mesoscopic effects in the quantum Hall regime". Pramana 58, nr 2 (luty 2002): 271–83. http://dx.doi.org/10.1007/s12043-002-0013-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ma, M., i A. Yu Zyuzin. "Josephson Effect in the Quantum Hall Regime". Europhysics Letters (EPL) 21, nr 9 (20.03.1993): 941–45. http://dx.doi.org/10.1209/0295-5075/21/9/011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Zheng, H. Z., K. K. Choi, D. C. Tsui i G. Weimann. "Size effect in the quantum Hall regime". Surface Science 170, nr 1-2 (kwiecień 1986): 209–13. http://dx.doi.org/10.1016/0039-6028(86)90963-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Yusa, G., H. Shtrikman i I. Bar-Joseph. "Photoluminescence in the fractional quantum Hall regime". Physica E: Low-dimensional Systems and Nanostructures 12, nr 1-4 (styczeń 2002): 49–54. http://dx.doi.org/10.1016/s1386-9477(01)00259-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ando, Tsuneya. "Local Current Distribution in Quantum Hall Regime". Journal of the Physical Society of Japan 58, nr 10 (15.10.1989): 3711–17. http://dx.doi.org/10.1143/jpsj.58.3711.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Nurmikko, Arto, i Aron Pinczuk. "Optical Probes in the Quantum Hall Regime". Physics Today 46, nr 6 (czerwiec 1993): 24–32. http://dx.doi.org/10.1063/1.881352.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Grunwald, A., i J. Hajdu. "Thermoelectric effects in the quantum Hall regime". Solid State Communications 63, nr 4 (lipiec 1987): 289–92. http://dx.doi.org/10.1016/0038-1098(87)90910-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Łydżba, Patrycja, i Janusz Jacak. "Identifying Particle Correlations in Quantum Hall Regime". Annalen der Physik 530, nr 3 (13.11.2017): 1700221. http://dx.doi.org/10.1002/andp.201700221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Page, D. A., i E. Brown. "Nonadiabatic Effects in the Quantum Hall Regime". Annals of Physics 223, nr 1 (kwiecień 1993): 75–128. http://dx.doi.org/10.1006/aphy.1993.1027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kasner, Marcus. "Electronic correlation in the quantum Hall regime". Annalen der Physik 11, nr 3 (marzec 2002): 175–252. http://dx.doi.org/10.1002/1521-3889(200203)11:3<175::aid-andp175>3.0.co;2-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

GIESBERS, A. J. M., U. ZEITLER, J. C. MAAN, D. REUTER i A. D. WIECK. "AHARONOV-BOHM EFFECT IN THE QUANTUM HALL REGIME". International Journal of Modern Physics B 21, nr 08n09 (10.04.2007): 1404–8. http://dx.doi.org/10.1142/s0217979207042902.

Pełny tekst źródła
Streszczenie:
We have fabricated quantum rings in a GaAs/GaAlAs heterostructure 2DEG by local anodic oxidation with an atomic force microscope. In low magnetic fields we observe Aharonov-Bohm oscillations with a period of 60 mT corresponding to an effective ring diameter of 300 nm. In the high field regime, between filling factors ν = 2/3 and ν = 3, we observe Aharonov-Bohm oscillations of quantum Hall edge channels with a surprisingly large period, Δ B = 163 mT , corresponding to an edge channel around the inner diameter of the ring.
Style APA, Harvard, Vancouver, ISO itp.
36

GRANGER, GHISLAIN, J. P. EISENSTEIN i J. L. RENO. "EDGE HEAT TRANSPORT IN THE QUANTUM HALL REGIME". International Journal of Modern Physics B 23, nr 12n13 (20.05.2009): 2616–17. http://dx.doi.org/10.1142/s0217979209062074.

Pełny tekst źródła
Streszczenie:
We investigate the transport of heat in the integer quantized Hall regime. We make use of quantum point contacts (QPC's) positioned along the edge of a large quantum Hall droplet to both locally heat and locally detect temperature rises at the edge of the droplet. The detection scheme is thermoelectric, in essence identical to one introduced by Molenkamp, et al.1 in the early 1990's for heat transport experiments at zero magnetic field. At zero magnetic field we find that heat moves away from the heater QPC more or less isotropically. As expected from the Mott formula, we find a close connection between the detector QPC's thermoelectric response and the derivative, with respect to gate voltage, of its conductance. At high magnetic field our results show, not surprisingly, that heat transport is chiral in the quantum Hall regime. At total filling factor ν = 1 we inject a hot distribution of electrons into the edge with one of three QPC's. We observe a thermoelectric voltage at the other QPC's only if they are "downstream" from the heater. No signals are detected in the upstream direction. The magnitude of the detected thermal response is dependent upon the distance between the heater and detector QPC's. Additional measurements, in which a second QPC, between the heater and the detector, is used to drain away a portion of the injected heat, strongly suggest that the chiral heat transport we observe is indeed confined to the edge of the Hall droplet. Experiments are underway in the fractional quantum Hall regime to search for "upstream" heat propagation. Theory has suggested that such anti-chiral transport should exist at certain fractions, notably ν = 2/3, owing to backward-propagating neutral modes. Note from Publisher: This article contains the abstract only.
Style APA, Harvard, Vancouver, ISO itp.
37

CHENAUD, B., C. CHAUBET, B. JOUAULT, L. SAMINADAYAR, D. MAILLY, G. FAINI i A. CAVANNA. "ARE AHARONOV–BOHM EFFECT AND QUANTIZED HALL REGIME COMPATIBLE?" International Journal of Nanoscience 02, nr 06 (grudzień 2003): 535–41. http://dx.doi.org/10.1142/s0219581x03001656.

Pełny tekst źródła
Streszczenie:
We present calculations of the quantum oscillations appearing in the transmission of a mesoscopic GaAs / GaAlAs ring isolated by quantum point contacts. We show that the device acts as an electronic Fabry–Perot spectrometer in the quantum Hall effect regime, and discuss the effect of the coherence length of edge states.
Style APA, Harvard, Vancouver, ISO itp.
38

Maasilta, I. J., i V. J. Goldman. "Energetics of quantum antidot states in the quantum Hall regime". Physical Review B 57, nr 8 (15.02.1998): R4273—R4276. http://dx.doi.org/10.1103/physrevb.57.r4273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Huber, M., M. Grayson, M. Rother, R. A. Deutschmann, W. Biberacher, W. Wegscheider, M. Bichler i G. Abstreiter. "Tunneling in the quantum Hall regime between orthogonal quantum wells". Physica E: Low-dimensional Systems and Nanostructures 12, nr 1-4 (styczeń 2002): 125–28. http://dx.doi.org/10.1016/s1386-9477(01)00283-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Pashitskii, E. A. "New quantum states in the fractional quantum Hall effect regime". Low Temperature Physics 31, nr 2 (luty 2005): 171–78. http://dx.doi.org/10.1063/1.1867312.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kettemann, Stefan. "Persistent Hall voltage and current in the fractional quantum Hall regime". Physical Review B 55, nr 4 (15.01.1997): 2512–22. http://dx.doi.org/10.1103/physrevb.55.2512.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

PELED, E., D. SHAHAR, Y. CHEN, E. DIEZ, D. L. SIVCO i A. Y. CHO. "QUANTUM HALL TRANSITIONS IN MESOSCOPIC SAMPLES". International Journal of Modern Physics B 18, nr 27n29 (30.11.2004): 3575–80. http://dx.doi.org/10.1142/s0217979204027049.

Pełny tekst źródła
Streszczenie:
We present an experimental study of four-terminal resistance fluctuations of mesoscopic samples in the quantum Hall regime. We show that in the vicinity of integer quantum Hall transitions there exist two kinds of correlations between the longitudinal and Hall resistances of the samples, one on either side of the transition region.
Style APA, Harvard, Vancouver, ISO itp.
43

Polyakov, D. G., i B. I. Shklovskii. "Conductivity-peak broadening in the quantum Hall regime". Physical Review B 48, nr 15 (15.10.1993): 11167–75. http://dx.doi.org/10.1103/physrevb.48.11167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Knüppel, Patrick, Sylvain Ravets, Martin Kroner, Stefan Fält, Werner Wegscheider i Atac Imamoglu. "Nonlinear optics in the fractional quantum Hall regime". Nature 572, nr 7767 (8.07.2019): 91–94. http://dx.doi.org/10.1038/s41586-019-1356-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Hohls, F., U. Zeitler i R. J. Haug. "High Frequency Conductivity in the Quantum Hall Regime". Physical Review Letters 86, nr 22 (28.05.2001): 5124–27. http://dx.doi.org/10.1103/physrevlett.86.5124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Pruisken, A. M. M., i M. A. Baranov. "Cracking Coulomb Interactions in the Quantum Hall Regime". Europhysics Letters (EPL) 31, nr 9 (20.09.1995): 543–48. http://dx.doi.org/10.1209/0295-5075/31/9/007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

de C. Chamon, C., i X. G. Wen. "Resonant tunneling in the fractional quantum Hall regime". Physical Review Letters 70, nr 17 (26.04.1993): 2605–8. http://dx.doi.org/10.1103/physrevlett.70.2605.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Polyakov, D. G. "Spin-flip scattering in the quantum Hall regime". Physical Review B 53, nr 23 (15.06.1996): 15777–88. http://dx.doi.org/10.1103/physrevb.53.15777.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Oto, K., S. Takaoka i K. Murase. "Width of compressible strips in quantum Hall regime". Physica B: Condensed Matter 298, nr 1-4 (kwiecień 2001): 18–23. http://dx.doi.org/10.1016/s0921-4526(01)00247-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hernández, C., C. Consejo i C. Chaubet. "Admittance measurements in the quantum Hall effect regime". Physica B: Condensed Matter 453 (listopad 2014): 154–57. http://dx.doi.org/10.1016/j.physb.2014.03.091.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii