Artykuły w czasopismach na temat „Quantum field theory”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum field theory.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum field theory”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hofmann, Ralf. "Quantum Field Theory". Universe 10, nr 1 (28.12.2023): 14. http://dx.doi.org/10.3390/universe10010014.

Pełny tekst źródła
Streszczenie:
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
Style APA, Harvard, Vancouver, ISO itp.
2

Hudson, R. L., i L. S. Brown. "Quantum Field Theory". Mathematical Gazette 79, nr 484 (marzec 1995): 249. http://dx.doi.org/10.2307/3620134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Wilczek, Frank. "Quantum field theory". Reviews of Modern Physics 71, nr 2 (1.03.1999): S85—S95. http://dx.doi.org/10.1103/revmodphys.71.s85.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 36, nr 9 (wrzesień 1985): 391. http://dx.doi.org/10.1088/0031-9112/36/9/028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Mandl, F., G. Shaw i Stephen Gasiorowicz. "Quantum Field Theory". Physics Today 38, nr 10 (październik 1985): 111–12. http://dx.doi.org/10.1063/1.2814741.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Collins, P. D. B. "Quantum Field Theory". Physics Bulletin 37, nr 7 (lipiec 1986): 304. http://dx.doi.org/10.1088/0031-9112/37/7/030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Unger, H. J. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 187, Part_1 (styczeń 1994): 155–56. http://dx.doi.org/10.1524/zpch.1994.187.part_1.155a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Uhlmann, A. "Quantum Field Theory". Zeitschrift für Physikalische Chemie 194, Part_1 (styczeń 1996): 130. http://dx.doi.org/10.1524/zpch.1996.194.part_1.130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Brown, Lowell S., Michio Kaku i O. W. Greenberg. "Quantum Field Theory and Quantum Field Theory: A Modern Introduction". Physics Today 47, nr 2 (luty 1994): 104–6. http://dx.doi.org/10.1063/1.2808409.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Frolov, P. A., i A. V. Shebeko. "Relativistic Invariance and Mass Renormalization in Quantum Field Theory". Ukrainian Journal of Physics 59, nr 11 (listopad 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

SCHLINGEMANN, DIRK. "FROM EUCLIDEAN FIELD THEORY TO QUANTUM FIELD THEORY". Reviews in Mathematical Physics 11, nr 09 (październik 1999): 1151–78. http://dx.doi.org/10.1142/s0129055x99000362.

Pełny tekst źródła
Streszczenie:
In order to construct examples for interacting quantum field theory models, the methods of Euclidean field theory turned out to be powerful tools since they make use of the techniques of classical statistical mechanics. Starting from an appropriate set of Euclidean n-point functions (Schwinger distributions), a Wightman theory can be reconstructed by an application of the famous Osterwalder–Schrader reconstruction theorem. This procedure (Wick rotation), which relates classical statistical mechanics and quantum field theory, is, however, somewhat subtle. It relies on the analytic properties of the Euclidean n-point functions. We shall present here a C*-algebraic version of the Osterwalder–Schrader reconstruction theorem. We shall see that, via our reconstruction scheme, a Haag–Kastler net of bounded operators can directly be reconstructed. Our considerations also include objects, like Wilson loop variables, which are not point-like localized objects like distributions. This point of view may also be helpful for constructing gauge theories.
Style APA, Harvard, Vancouver, ISO itp.
12

STERMAN, GEORGE. "PERTURBATIVE QUANTUM FIELD THEORY". International Journal of Modern Physics A 16, nr 18 (20.07.2001): 3041–65. http://dx.doi.org/10.1142/s0217751x01004402.

Pełny tekst źródła
Streszczenie:
This talk introduces perturbative quantum field on a heuristic level. It is directed at an audience familiar with elements of quantum mechanics, but not necessarily with high energy physics. It includes a discussion of the strategies behind experimental tests of fundamental theories, and of the field theory interpretations of these tests.
Style APA, Harvard, Vancouver, ISO itp.
13

Doplicher, Sergio. "Quantum Field Theory on Quantum Spacetime". Journal of Physics: Conference Series 53 (1.11.2006): 793–98. http://dx.doi.org/10.1088/1742-6596/53/1/051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

UBRIACO, MARCELO R. "QUANTUM GROUP SCHRÖDINGER FIELD THEORY". Modern Physics Letters A 08, nr 23 (30.07.1993): 2213–21. http://dx.doi.org/10.1142/s021773239300194x.

Pełny tekst źródła
Streszczenie:
We show that a quantum deformation of quantum mechanics given in a previous work is equivalent to quantum mechanics on a nonlinear lattice with step size ∆x=(1−q)x. Then, based on this, we develop the basic formalism of quantum group Schrödinger field theory in one spatial quantum dimension, and explicitly exhibit the SU q(2) covariant algebras satisfied by the q-bosonic and q-fermionic Schrödinger fields. We generalize this result to an arbitrary number of fields.
Style APA, Harvard, Vancouver, ISO itp.
15

Potvin, Jean, Harvey Gould i Jan Tobochnik. "Computational Quantum-Field Theory". Computers in Physics 7, nr 2 (1993): 149. http://dx.doi.org/10.1063/1.4823157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Adler, Stephen L. "Quaternionic Quantum Field Theory". Physical Review Letters 55, nr 13 (23.09.1985): 1430. http://dx.doi.org/10.1103/physrevlett.55.1430.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Adler, Stephen L. "Quaternionic Quantum Field Theory". Physical Review Letters 55, nr 8 (19.08.1985): 783–86. http://dx.doi.org/10.1103/physrevlett.55.783.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Brandt, Howard E. "Finslerian quantum field theory". Nonlinear Analysis: Theory, Methods & Applications 63, nr 5-7 (listopad 2005): e119-e130. http://dx.doi.org/10.1016/j.na.2005.02.085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ruetsche, Laura. "Interpreting Quantum Field Theory*". Philosophy of Science 69, nr 2 (czerwiec 2002): 348–78. http://dx.doi.org/10.1086/341047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Oeckl, Robert. "Braided Quantum Field Theory". Communications in Mathematical Physics 217, nr 2 (1.03.2001): 451–73. http://dx.doi.org/10.1007/s002200100375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Alder, Stephen L. "Quaternionic quantum field theory". Communications in Mathematical Physics 104, nr 4 (grudzień 1986): 611–56. http://dx.doi.org/10.1007/bf01211069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

W.F.A. "Renormalized quantum field theory". Mathematics and Computers in Simulation 33, nr 2 (sierpień 1991): 177. http://dx.doi.org/10.1016/0378-4754(91)90169-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bejleri, Dori, i Matilde Marcolli. "Quantum field theory overF1". Journal of Geometry and Physics 69 (lipiec 2013): 40–59. http://dx.doi.org/10.1016/j.geomphys.2013.03.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Freed, Daniel S., i Constantin Teleman. "Relative Quantum Field Theory". Communications in Mathematical Physics 326, nr 2 (31.01.2014): 459–76. http://dx.doi.org/10.1007/s00220-013-1880-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

HAAG, RUDOLF. "UNDERSTANDING QUANTUM FIELD THEORY". International Journal of Modern Physics B 10, nr 13n14 (30.06.1996): 1469–72. http://dx.doi.org/10.1142/s021797929600057x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Streater, Raymond. "Wightman quantum field theory". Scholarpedia 4, nr 5 (2009): 7123. http://dx.doi.org/10.4249/scholarpedia.7123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Münster, Gernot. "Lattice quantum field theory". Scholarpedia 5, nr 12 (2010): 8613. http://dx.doi.org/10.4249/scholarpedia.8613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jaffe, Arthur. "Euclidean quantum field theory". Nuclear Physics B 254 (styczeń 1985): 31–43. http://dx.doi.org/10.1016/0550-3213(85)90208-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rohrlich, Fritz. "Interpreting quantum field theory". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27, nr 1 (marzec 1996): 91–98. http://dx.doi.org/10.1016/1355-2198(95)00024-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Witten, Edward. "Topological quantum field theory". Communications in Mathematical Physics 117, nr 3 (wrzesień 1988): 353–86. http://dx.doi.org/10.1007/bf01223371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Grosse, H., i R. Wulkenhaar. "Noncommutative quantum field theory". Fortschritte der Physik 62, nr 9-10 (4.07.2014): 797–811. http://dx.doi.org/10.1002/prop.201400020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Gurau, Razvan, Jacques Magnen i Vincent Rivasseau. "Tree Quantum Field Theory". Annales Henri Poincaré 10, nr 5 (25.07.2009): 867–91. http://dx.doi.org/10.1007/s00023-009-0002-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

APFELDORF, KARYN M., HORACIO E. CAMBLONG i CARLOS R. ORDÓÑEZ. "FIELD REDEFINITION INVARIANCE IN QUANTUM FIELD THEORY". Modern Physics Letters A 16, nr 03 (30.01.2001): 103–12. http://dx.doi.org/10.1142/s021773230100319x.

Pełny tekst źródła
Streszczenie:
The issue of field redefinition invariance of path integrals in quantum field theory is re-examined. A "paradox" is presented involving the reduction to an effective quantum-mechanical theory of a (d+1)-dimensional free scalar field in a Minkowskian space–time with compactified spatial coordinates. The implementation of field redefinitions both before and after the reduction suggests that operator-ordering issues in quantum field theory should not be ignored.
Style APA, Harvard, Vancouver, ISO itp.
34

Freed, D. S. "K-theory in quantum field theory". Current Developments in Mathematics 2001, nr 1 (2001): 41–887. http://dx.doi.org/10.4310/cdm.2001.v2001.n1.a2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

BENDER, CARL M. "NON-HERMITIAN QUANTUM FIELD THEORY". International Journal of Modern Physics A 20, nr 19 (30.07.2005): 4646–52. http://dx.doi.org/10.1142/s0217751x05028326.

Pełny tekst źródła
Streszczenie:
In my talk at the Seventh QCD Workshop held in Villefranche in January 2003 I showed that a non-Hermitian Hamiltonian H possessing an unbroken [Formula: see text] symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator [Formula: see text], which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate [Formula: see text] is cumbersome in quantum mechanics and impossible in quantum field theory. I describe here an alternative method for calculating [Formula: see text] directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method gives the [Formula: see text] operator in quantum field theory. The [Formula: see text] operator is a new time-independent observable in [Formula: see text]-symmetric quantum field theory.
Style APA, Harvard, Vancouver, ISO itp.
36

Lori, Nicolás, José Neves i José Machado. "Quantum Field Theory Representation in Quantum Computation". Applied Sciences 11, nr 23 (28.11.2021): 11272. http://dx.doi.org/10.3390/app112311272.

Pełny tekst źródła
Streszczenie:
Recently, from the deduction of the result MIP* = RE in quantum computation, it was obtained that Quantum Field Theory (QFT) allows for different forms of computation in quantum computers that Quantum Mechanics (QM) does not allow. Thus, there must exist forms of computation in the QFT representation of the Universe that the QM representation does not allow. We explain in a simple manner how the QFT representation allows for different forms of computation by describing the differences between QFT and QM, and obtain why the future of quantum computation will require the use of QFT.
Style APA, Harvard, Vancouver, ISO itp.
37

Gogioso, Stefano, i Fabrizio Genovese. "Quantum Field Theory in Categorical Quantum Mechanics". Electronic Proceedings in Theoretical Computer Science 287 (31.01.2019): 163–77. http://dx.doi.org/10.4204/eptcs.287.9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Calcagni, Gianluca, Leonardo Modesto i Giuseppe Nardelli. "Quantum spectral dimension in quantum field theory". International Journal of Modern Physics D 25, nr 05 (kwiecień 2016): 1650058. http://dx.doi.org/10.1142/s0218271816500589.

Pełny tekst źródła
Streszczenie:
We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension [Formula: see text] of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension [Formula: see text]. In particular, in the presence of higher momentum powers it changes with the scale, dropping from [Formula: see text] in the infrared (IR) to a value [Formula: see text] in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value [Formula: see text] for any dimension [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
39

Barrett, John W. "Quantum gravity as topological quantum field theory". Journal of Mathematical Physics 36, nr 11 (listopad 1995): 6161–79. http://dx.doi.org/10.1063/1.531239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Balachandran, A. P. "Localization in quantum field theory". International Journal of Geometric Methods in Modern Physics 14, nr 08 (11.05.2017): 1740008. http://dx.doi.org/10.1142/s0219887817400084.

Pełny tekst źródła
Streszczenie:
In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function [Formula: see text] vanishes outside a spatial region [Formula: see text], it is said to be localized in [Formula: see text]. In particular, if a spatial region [Formula: see text] is disjoint from [Formula: see text], a wave function [Formula: see text] localized in [Formula: see text] is orthogonal to [Formula: see text]. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.
Style APA, Harvard, Vancouver, ISO itp.
41

FIALKOVSKY, I. V., i D. V. VASSILEVICH. "QUANTUM FIELD THEORY IN GRAPHENE". International Journal of Modern Physics: Conference Series 14 (styczeń 2012): 88–99. http://dx.doi.org/10.1142/s2010194512007258.

Pełny tekst źródła
Streszczenie:
This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Style APA, Harvard, Vancouver, ISO itp.
42

FIALKOVSKY, I. V., i D. V. VASSILEVICH. "QUANTUM FIELD THEORY IN GRAPHENE". International Journal of Modern Physics A 27, nr 15 (14.06.2012): 1260007. http://dx.doi.org/10.1142/s0217751x1260007x.

Pełny tekst źródła
Streszczenie:
This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Style APA, Harvard, Vancouver, ISO itp.
43

JANSEN, KARL. "LATTICE FIELD THEORY". International Journal of Modern Physics E 16, nr 09 (październik 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.

Pełny tekst źródła
Streszczenie:
Starting with the example of the quantum mechanical harmonic oscillator, we develop the concept of euclidean lattice field theory. After describing Wilson's formulation of quantum chromodynamics on the lattice, we will introduce modern lattice QCD actions which greatly reduce lattice artefacts or are even chiral invariant. The substantial algorithmic improvements of the last couple of years will be shown which led to a real breakthrough for dynamical Wilson fermion simulations. Finally, we will present some results of present simulations with dynamical quarks and demonstrate that nowadays even at small values of the quark mass high precision simulation results for physical quantities can be obtained.
Style APA, Harvard, Vancouver, ISO itp.
44

Gracey, J. A. "Large Nf quantum field theory". International Journal of Modern Physics A 33, nr 35 (20.12.2018): 1830032. http://dx.doi.org/10.1142/s0217751x18300326.

Pełny tekst źródła
Streszczenie:
We review the development of the large [Formula: see text] method, where [Formula: see text] indicates the number of flavours, used to study perturbative and nonperturbative properties of quantum field theories. The relevant historical background is summarized as a prelude to the introduction of the large [Formula: see text] critical point formalism. This is used to compute large [Formula: see text] corrections to [Formula: see text]-dimensional critical exponents of the universal quantum field theory present at the Wilson–Fisher fixed point. While pedagogical in part the application to gauge theories is also covered and the use of the large [Formula: see text] method to complement explicit high order perturbative computations in gauge theories is also highlighted. The usefulness of the technique in relation to other methods currently used to study quantum field theories in [Formula: see text]-dimensions is also summarized.
Style APA, Harvard, Vancouver, ISO itp.
45

Baker, David John. "Against Field Interpretations of Quantum Field Theory". British Journal for the Philosophy of Science 60, nr 3 (1.09.2009): 585–609. http://dx.doi.org/10.1093/bjps/axp027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Arimitsu, T., M. Guida i H. Umezawa. "Dissipative quantum field theory -thermo field dynamics-". Physica A: Statistical Mechanics and its Applications 148, nr 1-2 (luty 1988): 1–26. http://dx.doi.org/10.1016/0378-4371(88)90131-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Coutinho, F. AB, D. Kiang, Y. Nogami i L. Tomio. "Dirac's hole theory versus quantum field theory". Canadian Journal of Physics 80, nr 8 (1.08.2002): 837–45. http://dx.doi.org/10.1139/p02-048.

Pełny tekst źródła
Streszczenie:
Dirac's hole theory and quantum field theory are usually considered equivalent to each other. The equivalence, however, does not necessarily hold, as we discuss in terms of models of a certain type. We further suggest that the equivalence may fail in more general models. This problem is closely related to the validity of the Pauli principle in intermediate states of perturbation theory. PACS Nos.: 03.65-w, 11.10-z, 11.15Bt, 12.39Ba
Style APA, Harvard, Vancouver, ISO itp.
48

Pospisil, Christina. "Book Review: Quantum Field Theory". Physics International 12, nr 1 (1.01.2021): 1. http://dx.doi.org/10.3844/pisp.2021.1.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Borcherds, Richard. "Renormalization and quantum field theory". Algebra & Number Theory 5, nr 5 (31.12.2011): 627–58. http://dx.doi.org/10.2140/ant.2011.5.627.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Carvalho, C. A. A. de. "Summary talk: quantum field theory". Brazilian Journal of Physics 34, nr 1a (marzec 2004): 224–25. http://dx.doi.org/10.1590/s0103-97332004000200014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii