Artykuły w czasopismach na temat „Quantum dots”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum dots.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum dots”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Aharonovich, Igor. "Quantum dots light up ahead". Photonics Insights 1, nr 2 (2022): C04. http://dx.doi.org/10.3788/pi.2022.c04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kouwenhoven, Leo, i Charles Marcus. "Quantum dots". Physics World 11, nr 6 (czerwiec 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Reed, Mark A. "Quantum Dots". Scientific American 268, nr 1 (styczeń 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Zhou, Xiaoyan, Liang Zhai i Jin Liu. "Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies". Photonics Insights 1, nr 2 (2022): R07. http://dx.doi.org/10.3788/pi.2022.r07.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Artemyev, M. V., i U. Woggon. "Quantum dots in photonic dots". Applied Physics Letters 76, nr 11 (13.03.2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Loss, Daniel, i David P. DiVincenzo. "Quantum computation with quantum dots". Physical Review A 57, nr 1 (1.01.1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

López, Juan Carlos. "Quantum leap for quantum dots". Nature Reviews Neuroscience 4, nr 3 (marzec 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zunger, Alex. "Semiconductor Quantum Dots". MRS Bulletin 23, nr 2 (luty 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Pełny tekst źródła
Streszczenie:
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
Style APA, Harvard, Vancouver, ISO itp.
9

Barachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, nr 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Pełny tekst źródła
Streszczenie:
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Style APA, Harvard, Vancouver, ISO itp.
10

Barachevsky, V. A. "Photochromic Quantum Dots". Russian Physics Journal 64, nr 11 (marzec 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Evanko, Daniel. "Bioluminescent quantum dots". Nature Methods 3, nr 4 (kwiecień 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Lindberg, V., i B. Hellsing. "Metallic quantum dots". Journal of Physics: Condensed Matter 17, nr 13 (19.03.2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kaputkina, N. E., i Yu E. Lozovik. "“Spherical” quantum dots". Physics of the Solid State 40, nr 11 (listopad 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Dukes, Albert D., James R. McBride i Sandra Rosenthal. "Luminescent Quantum Dots". ECS Transactions 33, nr 33 (17.12.2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Tinkham, M. "Metallic quantum dots". Philosophical Magazine B 79, nr 9 (wrzesień 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin i Bruce E. Cohen. "Caged Quantum Dots". Journal of the American Chemical Society 130, nr 47 (26.11.2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Pile, David. "Intraband quantum dots". Nature Photonics 9, nr 1 (23.12.2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Guyot-Sionnest, Philippe. "Colloidal quantum dots". Comptes Rendus Physique 9, nr 8 (październik 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Zhou, Weidong, i James J. Coleman. "Semiconductor quantum dots". Current Opinion in Solid State and Materials Science 20, nr 6 (grudzień 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gershoni, David. "Pyramidal quantum dots". Nature Photonics 4, nr 5 (maj 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Nomura, Masahiro, i Yasuhiko Arakawa. "Shaking quantum dots". Nature Photonics 6, nr 1 (22.12.2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein i John L. Hutchison. "Electrodeposited quantum dots". Surface Science 311, nr 1-2 (maj 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev i A. L. Aseev. "AlInAs quantum dots". JETP Letters 105, nr 2 (styczeń 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati i C. N. R. Rao. "Phosphorene quantum dots". Chemical Physics Letters 699 (maj 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

H. Sargent, E. "Infrared Quantum Dots". Advanced Materials 17, nr 5 (8.03.2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Nozik, A. J., H. Uchida, P. V. Kamat i C. Curtis. "GaAs Quantum Dots". Israel Journal of Chemistry 33, nr 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Bacon, Mitchell, Siobhan J. Bradley i Thomas Nann. "Graphene Quantum Dots". Particle & Particle Systems Characterization 31, nr 4 (27.11.2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Tárnok, Attila. "Quantum of dots". Cytometry Part A 77A, nr 10 (24.09.2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce i S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots". Optics and Photonics News 13, nr 12 (1.12.2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Sánchez Pérez, Karla J., J. C. García-Melgarejo i J. J. Sánchez-Mondragón. "Semi classical quantum dots in their own micro cavity". Acta Universitaria 23 (6.12.2013): 23–26. http://dx.doi.org/10.15174/au.2013.557.

Pełny tekst źródła
Streszczenie:
Among quantum dots there is an interaction called Foerster interaction, it consists on the transfer of one exciton from a quantum dot to another in a non-radiative energy transfer mechanism. In this work, we develop a model of the interaction of a pair of coupled Quan­tum Dots (QDs), each one in its own micro cavity, interacting with its own classical field.
Style APA, Harvard, Vancouver, ISO itp.
31

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto i Akira Endo. "Quantum Charge Fluctuations in Quantum Dots". Journal of the Physical Society of Japan 69, nr 3 (15.03.2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Burkard, Guido, Daniel Loss i David P. DiVincenzo. "Coupled quantum dots as quantum gates". Physical Review B 59, nr 3 (15.01.1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lozada-Cassou, M., Shi-Hai Dong i Jiang Yu. "Quantum features of semiconductor quantum dots". Physics Letters A 331, nr 1-2 (październik 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Molotkov, S. N., i S. S. Nazin. "Quantum cryptography based on quantum dots". Journal of Experimental and Theoretical Physics Letters 63, nr 8 (kwiecień 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh i D. Vasileska. "Quantum transport in ballistic quantum dots". Physica E: Low-dimensional Systems and Nanostructures 3, nr 1-3 (październik 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu i A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, nr 2 (26.02.2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Pachos, Jiannis K., i Vlatko Vedral. "Topological quantum gates with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, nr 6 (16.10.2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin i Irina A. Yugova. "Quantum beats in semiconductor quantum dots". Journal of Luminescence 108, nr 1-4 (czerwiec 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls i Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie 124, nr 50 (7.11.2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Bryant, Garnett W. "Quantum dots in quantum well structures". Journal of Luminescence 70, nr 1-6 (październik 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei i Jianxin Zhong. "Quantum confinement in graphene quantum dots". physica status solidi (RRL) - Rapid Research Letters 8, nr 5 (31.03.2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls i Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie International Edition 51, nr 50 (7.11.2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth i Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)". Small 11, nr 38 (październik 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, nr 1 (5.11.2018): 01. http://dx.doi.org/10.31579/2642-9799/004.

Pełny tekst źródła
Streszczenie:
Aptamers are short single stranded oligonucleotide sequences that exhibit high binding affinity and high specificity against their target molecule. Binding affinity and specificity are crucial features for aptamers in order to exploit their therapeutic and diagnostic potential and to make them an appealing candidate for the commercial market1,2. Aptamers contain functional moieties that can fold into different conformation such as hairpin stem and loops, G-quadruplexes, and pseudoknots. A study led by Dr Harleen Kaur involving unique stem-loop truncation strategy was employed to find the binding domain in a 66-mer long DNA aptamer sequence against the heparin binding domain of vascular endothelial growth factor (VEGF165) protein1. The results from the work demonstrated identification of a 26-mer long aptamer sequence referred as SL2-B in the paper with improvement in the binding affinity by more than 200-folds (Kd = 0.5nM) against VEGF protein. To improve the biostability of the aptamer in the biological fluids, the phosphorothioate linkages (PS-linkages) in the phosphate backbone of the DNA were introduced at the 5’-and 3’-termini of the obtained SL2-B aptamer sequence. The PS-modified SL2-B aptamer sequence demonstrated significant improvement in the stability without comprising
Style APA, Harvard, Vancouver, ISO itp.
45

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, nr 1 (5.11.2018): 01. http://dx.doi.org/10.31579/2642-9799/003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Stride, John Arron, i Fatemeh Mirnajafizadeh. "A Brief Review on Core/shell Quantum Dots". SDRP Journal of Nanotechnology & Material Science 3, nr 1 (2020): 121–26. http://dx.doi.org/10.25177/jnms.3.1.ra.10624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

JX, Guo. "Graphene-Quantum Dots Hybrid Based Dual Band Photodetector". Physical Science & Biophysics Journal 7, nr 1 (5.01.2023): 1–4. http://dx.doi.org/10.23880/psbj-16000234.

Pełny tekst źródła
Streszczenie:
Graphene, which can detect a broad spectrum from ultraviolet to terahertz, is a promising photodetector material because it offers a broad spectral bandwidth and fast response times. However, the nature of weak light absorption has limited the responsivity of graphene-based photodetectors. Here, we demonstrate a responsivity of up to ∼6.7×103 A/W in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. At the same time, benefits from gate-tunability, the device can response from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.
Style APA, Harvard, Vancouver, ISO itp.
48

Dudu, Veronica, Melissa Ramcharan, M. Lane Gilchrist, Eric C. Holland i Maribel Vazquez. "Liposome Delivery of Quantum Dots to the Cytosol of Live Cells". Journal of Nanoscience and Nanotechnology 8, nr 5 (1.05.2008): 2293–300. http://dx.doi.org/10.1166/jnn.2008.185.

Pełny tekst źródła
Streszczenie:
An increasing number of studies have demonstrated the multiple advantages of using nanocrystals, such as Quantum dots, for biological imaging. Quantum dots functionalized with biomolecules on their surfaces were shown to be able to bind to specific extracellular targets via specific recognition and to be internalized inside the cells, thereby allowing the imaging of intracellular pathways. However, the use of Quantum dots for live tracking of intracellular molecules is relatively limited because of the difficulties encountered during the induction of Quantum dots across living cell membranes. In this study we show that cationic liposomes can deliver low concentrations of non-targeted Quantum dots into the cytosol of living cells via a lipid-mediated fusion with the cell membrane. The intracellular Quantum dots exhibit aggregation that appears dependent upon their concentration, but does not visibly affect cell viability. Our results point towards the use of cationic liposomes as an effective delivery system for targeted Quantum dots within the cell cytosol, which would facilitate live cell imaging of the labeled molecules.
Style APA, Harvard, Vancouver, ISO itp.
49

Kaur, Ajaypal, Komal Pandey, Ramandeep Kaur, Nisha Vashishat i Manpreet Kaur. "Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors". Chemosensors 10, nr 9 (15.09.2022): 367. http://dx.doi.org/10.3390/chemosensors10090367.

Pełny tekst źródła
Streszczenie:
Carbon-based quantum dots and their nanocomposites have sparked immense interest for researchers as sensors due to their attractive physico-chemical properties caused by edge effects and quantum confinement. In this review article, we have discussed the synthesis and application of nanocomposites of graphene quantum dots (GQDs) and carbon quantum dots (CQDs). Different synthetic strategies for CQDs, GQDs, and their nanocomposites, are categorized as top-down and bottom-up approaches which include laser ablation, arc-discharge, chemical oxidation, ultrasonication, oxidative cleavage, microwave synthesis, thermal decomposition, solvothermal or hydrothermal method, stepwise organic synthesis, carbonization from small molecules or polymers, and impregnation. A comparison of methodologies is presented. The environmental application of nanocomposites of CQDs/GQDs and pristine quantum dots as sensors are presented in detail. Their applications envisage important domains dealing with the sensing of pollutant molecules. Recent advances and future perspective in the use of CQDs, GQDs, and their nanocomposites as sensors are also explored.
Style APA, Harvard, Vancouver, ISO itp.
50

Dong, Yongqiang, Jianpeng Lin, Yingmei Chen, Fengfu Fu, Yuwu Chi i Guonan Chen. "Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals". Nanoscale 6, nr 13 (2014): 7410–15. http://dx.doi.org/10.1039/c4nr01482k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii