Artykuły w czasopismach na temat „Quantum Dot Photocatalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum Dot Photocatalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chu, Kuan-Wu, Sher Lee, Chi-Jung Chang i Lingyun Liu. "Recent Progress of Carbon Dot Precursors and Photocatalysis Applications". Polymers 11, nr 4 (16.04.2019): 689. http://dx.doi.org/10.3390/polym11040689.
Pełny tekst źródłaChepape, Kgobudi Frans, Thapelo Prince Mofokeng, Pardon Nyamukamba, Kalenga Pierre Mubiayi i Makwena Justice Moloto. "Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles". Journal of Nanotechnology 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/5340784.
Pełny tekst źródłaWang, Ruili, Yuequn Shang, Pongsakorn Kanjanaboos, Wenjia Zhou, Zhijun Ning i Edward H. Sargent. "Colloidal quantum dot ligand engineering for high performance solar cells". Energy & Environmental Science 9, nr 4 (2016): 1130–43. http://dx.doi.org/10.1039/c5ee03887a.
Pełny tekst źródłaKande, Bhupendra, i Prachi Parmar. "Carbon Quantum Dot and Application: A Review". Spectrum of Emerging Sciences 2, nr 1 (22.04.2022): 11–24. http://dx.doi.org/10.55878/ses2022-2-1-3.
Pełny tekst źródłaQi, Houjuan, Cai Shi, Xiaona Jiang, Min Teng, Zhe Sun, Zhanhua Huang, Duo Pan, Shouxin Liu i Zhanhu Guo. "Constructing CeO2/nitrogen-doped carbon quantum dot/g-C3N4 heterojunction photocatalysts for highly efficient visible light photocatalysis". Nanoscale 12, nr 37 (2020): 19112–20. http://dx.doi.org/10.1039/d0nr02965c.
Pełny tekst źródłaLi, Lingwei, Hange Feng, Xiaofan Wei, Kun Jiang, Shaolin Xue i Paul K. Chu. "Ag as Cocatalyst and Electron-Hole Medium in CeO2 QDs/Ag/Ag2Se Z-scheme Heterojunction Enhanced the Photo-Electrocatalytic Properties of the Photoelectrode". Nanomaterials 10, nr 2 (31.01.2020): 253. http://dx.doi.org/10.3390/nano10020253.
Pełny tekst źródłaLiu, Yunxin, Jianxin Shi, Qing Peng i Yadong Li. "CuO Quantum-Dot-Sensitized Mesoporous ZnO for Visible-Light Photocatalysis". Chemistry - A European Journal 19, nr 13 (27.02.2013): 4319–26. http://dx.doi.org/10.1002/chem.201203316.
Pełny tekst źródłaHomer, Micaela Kalmek, Ding-Yuan Kuo, Florence Y. Dou i Brandi Michelle Cossairt. "(Keynote) Photoinduced Charge Transfer from Quantum Dots Measured By Cyclic Voltammetry". ECS Meeting Abstracts MA2022-02, nr 20 (9.10.2022): 916. http://dx.doi.org/10.1149/ma2022-0220916mtgabs.
Pełny tekst źródłaLi, Boyuan, Zhenhua Cao, Shixuan Wang, Qiang Wei i Zhurui Shen. "BiVO4 quantum dot-decorated BiPO4 nanorods 0D/1D heterojunction for enhanced visible-light-driven photocatalysis". Dalton Transactions 47, nr 30 (2018): 10288–98. http://dx.doi.org/10.1039/c8dt02402b.
Pełny tekst źródłaEvangelou, Sofia. "Altering Degenerate Four-Wave Mixing and Third-Harmonic Generation in a Coupled Quantum Dot–Metallic Nanoparticle Structure with the Use of the Purcell Effect". Materials Proceedings 4, nr 1 (12.11.2020): 39. http://dx.doi.org/10.3390/iocn2020-07875.
Pełny tekst źródłaZhang, Xianfeng, Zongqun Li, Shaowen Xu i Yaowen Ruan. "Carbon quantum dot-sensitized hollow TiO2 spheres for high-performance visible light photocatalysis". New Journal of Chemistry 45, nr 19 (2021): 8693–700. http://dx.doi.org/10.1039/d1nj00501d.
Pełny tekst źródłaZhu, Bolin, Xuefei Li, Yue Wang, Na Liu, Ye Tian i Jinghai Yang. "Visible-light-driven photocatalytic degradation of RhB by carbon-quantum-dot-modified g-C3N4 on carbon cloth". CrystEngComm 23, nr 27 (2021): 4782–90. http://dx.doi.org/10.1039/d1ce00396h.
Pełny tekst źródłaZhao, Chenhui, Ying Liang, Wei Li, Yi Tian, Xin Chen, Dezhong Yin i Qiuyu Zhang. "BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis". RSC Advances 7, nr 83 (2017): 52614–20. http://dx.doi.org/10.1039/c7ra10344a.
Pełny tekst źródłaChi, Le Ha, Pham Duy Long, Hoang Vu Chung, Do Thi Phuong, Do Xuan Mai, Nguyen Thi Tu Oanh, Thach Thi Dao Lien i Le Van Trung. "Galvanic-Cell-Based Synthesis and Photovoltaic Performance of ZnO-CdS Core-Shell Nanorod Arrays for Quantum Dots Sensitized Solar Cells". Applied Mechanics and Materials 618 (sierpień 2014): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amm.618.64.
Pełny tekst źródłaMa, Beibei, Liduo Wang, Haopeng Dong, Rui Gao, Yi Geng, Yifeng Zhu i Yong Qiu. "Photocatalysis of PbS quantum dots in a quantum dot-sensitized solar cell: photovoltaic performance and characteristics". Phys. Chem. Chem. Phys. 13, nr 7 (2011): 2656–58. http://dx.doi.org/10.1039/c0cp02415e.
Pełny tekst źródłaWei, Wei, Yongji Yao, Qi Zhao, Zhilong Xu, Qinfan Wang, Zongtao Zhang i Yanfeng Gao. "Oxygen defect-induced localized surface plasmon resonance at the WO3−x quantum dot/silver nanowire interface: SERS and photocatalysis". Nanoscale 11, nr 12 (2019): 5535–47. http://dx.doi.org/10.1039/c9nr01059a.
Pełny tekst źródłaKassahun, Gashaw Beyene. "High Tunability of Size Dependent Optical Properties of ZnO@M@Au (M = SiO2, In2O3, TiO2) Core/Spacer/Shell Nanostructure". Advanced Nano Research 2, nr 1 (12.01.2019): 1–13. http://dx.doi.org/10.21467/anr.2.1.1-13.
Pełny tekst źródłaBajorowicz, Beata, Marek P. Kobylański, Anna Gołąbiewska, Joanna Nadolna, Adriana Zaleska-Medynska i Anna Malankowska. "Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis". Advances in Colloid and Interface Science 256 (czerwiec 2018): 352–72. http://dx.doi.org/10.1016/j.cis.2018.02.003.
Pełny tekst źródłaYu, Linhui, Yan Huang, Guangcan Xiao i Danzhen Li. "Application of long wavelength visible light (λ > 650 nm) in photocatalysis with a p-CuO–n-In2O3 quantum dot heterojunction photocatalyst". Journal of Materials Chemistry A 1, nr 34 (2013): 9637. http://dx.doi.org/10.1039/c3ta12207g.
Pełny tekst źródłaHu, Haikun, Zhou Lu, Jiasheng Li i Zongtao Li. "P‐11.3: Manufacturing Quantum Dot Pixel Array via Self‐Assembling on Hydrophobic‐Hydrophilic Transformation Substrate". SID Symposium Digest of Technical Papers 54, S1 (kwiecień 2023): 836–40. http://dx.doi.org/10.1002/sdtp.16428.
Pełny tekst źródłaKang, Chao, Ying Huang, Hui Yang, Xiu Fang Yan i Zeng Ping Chen. "A Review of Carbon Dots Produced from Biomass Wastes". Nanomaterials 10, nr 11 (23.11.2020): 2316. http://dx.doi.org/10.3390/nano10112316.
Pełny tekst źródłaLan, Shanyou, Ziguo Lin, Da Zhang, Yongyi Zeng i Xiaolong Liu. "Photocatalysis Enhancement for Programmable Killing of Hepatocellular Carcinoma through Self-Compensation Mechanisms Based on Black Phosphorus Quantum-Dot-Hybridized Nanocatalysts". ACS Applied Materials & Interfaces 11, nr 10 (18.02.2019): 9804–13. http://dx.doi.org/10.1021/acsami.8b21820.
Pełny tekst źródłaRajender, Gone, Jitendra Kumar i P. K. Giri. "Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis". Applied Catalysis B: Environmental 224 (maj 2018): 960–72. http://dx.doi.org/10.1016/j.apcatb.2017.11.042.
Pełny tekst źródłaWang, Ruiling, Tian Xie, Zhiyong Sun, Taofei Pu, Weibing Li i Jin-Ping Ao. "Graphene quantum dot modified g-C3N4 for enhanced photocatalytic oxidation of ammonia performance". RSC Advances 7, nr 81 (2017): 51687–94. http://dx.doi.org/10.1039/c7ra07988e.
Pełny tekst źródłaLi, Zesheng, Bolin Li, Shaohong Peng, Dehao Li, Siyuan Yang i Yueping Fang. "Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange". RSC Adv. 4, nr 66 (2014): 35144–48. http://dx.doi.org/10.1039/c4ra05749j.
Pełny tekst źródłaKong, Zhouzhou, Xingzhu Chen, Wee-Jun Ong, Xiujian Zhao i Neng Li. "Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis". Applied Surface Science 463 (styczeń 2019): 1148–53. http://dx.doi.org/10.1016/j.apsusc.2018.09.026.
Pełny tekst źródłaBelhacova, Lenka, Hana Bibova, Tereza Marikova, Martin Kuchar, Radek Zouzelka i Jiri Rathousky. "Removal of Ampicillin by Heterogeneous Photocatalysis: Combined Experimental and DFT Study". Nanomaterials 11, nr 8 (3.08.2021): 1992. http://dx.doi.org/10.3390/nano11081992.
Pełny tekst źródłaAwang, Huzaikha, Tim Peppel i Jennifer Strunk. "Photocatalytic Degradation of Diclofenac by Nitrogen-Doped Carbon Quantum Dot-Graphitic Carbon Nitride (CNQD)". Catalysts 13, nr 4 (13.04.2023): 735. http://dx.doi.org/10.3390/catal13040735.
Pełny tekst źródłaSiva Kumar, Nadavala, Mohammad Asif, T. Ranjeth Kumar Reddy, Gnanendra Shanmugam i Abdelhamid Ajbar. "Silver Quantum Dot Decorated 2D-SnO2 Nanoflakes for Photocatalytic Degradation of the Water Pollutant Rhodamine B". Nanomaterials 9, nr 11 (30.10.2019): 1536. http://dx.doi.org/10.3390/nano9111536.
Pełny tekst źródłaShao, Xiao, Weiyue Xin i Xiaohong Yin. "Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol". Beilstein Journal of Nanotechnology 8 (30.10.2017): 2264–70. http://dx.doi.org/10.3762/bjnano.8.226.
Pełny tekst źródłaWei, Maobin, Lili Yang, Yongsheng Yan i Liang Ni. "Preparation of ZnS quantum dot photocatalyst and study on photocatalytic degradation of antibiotics". Materials Express 9, nr 5 (1.08.2019): 413–18. http://dx.doi.org/10.1166/mex.2019.1518.
Pełny tekst źródłaTang, Xu, Yang Yu, Changchang Ma, Guosheng Zhou, Xinlin Liu, Minshan Song, Ziyang Lu i Lei Liu. "The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation". New Journal of Chemistry 43, nr 47 (2019): 18860–67. http://dx.doi.org/10.1039/c9nj04764f.
Pełny tekst źródłaChan, Donald K. L., Po Ling Cheung i Jimmy C. Yu. "A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots". Beilstein Journal of Nanotechnology 5 (22.05.2014): 689–95. http://dx.doi.org/10.3762/bjnano.5.81.
Pełny tekst źródłaJia, Dongmei, Xiaoyu Li, Qianqian Chi, Jingxiang Low, Ping Deng, Wenbo Wu, Yikang Wang i in. "Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO2 Enabling Infrared Light-Driven Overall Water Splitting". Research 2022 (13.04.2022): 1–9. http://dx.doi.org/10.34133/2022/9781453.
Pełny tekst źródłaApostolaki, Maria-Athina, Alexia Toumazatou, Maria Antoniadou, Elias Sakellis, Evangelia Xenogiannopoulou, Spiros Gardelis, Nikos Boukos, Polycarpos Falaras, Athanasios Dimoulas i Vlassis Likodimos. "Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications". Nanomaterials 10, nr 12 (21.12.2020): 2566. http://dx.doi.org/10.3390/nano10122566.
Pełny tekst źródłaGao, Huajing, Chengxiang Zheng, Hua Yang, Xiaowei Niu i Shifa Wang. "Construction of a CQDs/Ag3PO4/BiPO4 Heterostructure Photocatalyst with Enhanced Photocatalytic Degradation of Rhodamine B under Simulated Solar Irradiation". Micromachines 10, nr 9 (23.08.2019): 557. http://dx.doi.org/10.3390/mi10090557.
Pełny tekst źródłaIqbal, Anwar, Fatimah Bukola Shittu, Mohamad Nasir Mohamad Ibrahim, N. H. H. Abu Bakar, Noorfatimah Yahaya, Kalaivizhi Rajappan, M. Hazwan Hussin, Wan Hazman Danial i Lee D. Wilson. "Photoreactive Carbon Dots Modified g-C3N4 for Effective Photooxidation of Bisphenol-A under Visible Light Irradiation". Catalysts 12, nr 11 (25.10.2022): 1311. http://dx.doi.org/10.3390/catal12111311.
Pełny tekst źródłaChen, Liang-Che, Yuan-Kai Xiao, Nei-Jin Ke, Chun-Yan Shih, Te-Fu Yeh, Yuh-Lang Lee i Hsisheng Teng. "Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H2 evolution". Journal of Materials Chemistry A 6, nr 37 (2018): 18216–24. http://dx.doi.org/10.1039/c8ta05288c.
Pełny tekst źródłaSong, Taeyoung, Jun Young Cheong, Ji Yong Choi, Cheolmin Park, Chulhee Lee, Changsoo Lee, Hyuck Mo Lee i in. "A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms". Nanoscale Advances 1, nr 10 (2019): 3948–56. http://dx.doi.org/10.1039/c9na00423h.
Pełny tekst źródłaPashazadeh, Sara, Biuck Habibi, Ali Pashazadeh, Ali Fatemi i Milad Rasouli. "(Digital Presentation) Facile Fabrication of Graphene Quantum Dot- Doped Polyaniline Embedded Cu Metal-Organic Frameworks Composite Electrode As Improved Anode Electrocatalyst for Methanol Oxidation". ECS Meeting Abstracts MA2022-01, nr 41 (7.07.2022): 2491. http://dx.doi.org/10.1149/ma2022-01412491mtgabs.
Pełny tekst źródłaWang, Ke, Zipeng Xing, Meng Du, Shiyu Zhang, Zhenzi Li, Kai Pan i Wei Zhou. "Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance". Catalysis Science & Technology 9, nr 23 (2019): 6714–22. http://dx.doi.org/10.1039/c9cy01945f.
Pełny tekst źródłaSun, Qianqian, Zebin Yu, Ronghua Jiang, Yanping Hou, Lei Sun, Lun Qian, Fengyuan Li, Mingjie Li, Qi Ran i Heqing Zhang. "CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production". Nanoscale 12, nr 37 (2020): 19203–12. http://dx.doi.org/10.1039/d0nr05268j.
Pełny tekst źródłaChandrashekar, Hediyala B., Arun Maji, Ganga Halder, Sucheta Banerjee, Sayan Bhattacharyya i Debabrata Maiti. "Photocatalyzed borylation using water-soluble quantum dots". Chemical Communications 55, nr 44 (2019): 6201–4. http://dx.doi.org/10.1039/c9cc01737b.
Pełny tekst źródłaGrewal, Jaspreet Kaur, Manpreet Kaur, Kousik Mandal i Virender K. Sharma. "Carbon Quantum Dot-Titanium Doped Strontium Ferrite Nanocomposite: Visible Light Active Photocatalyst to Degrade Nitroaromatics". Catalysts 12, nr 10 (27.09.2022): 1126. http://dx.doi.org/10.3390/catal12101126.
Pełny tekst źródłaYuan, Yucheng, Na Jin, Peter Saghy, Lacie Dube, Hua Zhu i Ou Chen. "Quantum Dot Photocatalysts for Organic Transformations". Journal of Physical Chemistry Letters 12, nr 30 (26.07.2021): 7180–93. http://dx.doi.org/10.1021/acs.jpclett.1c01717.
Pełny tekst źródłaRen, Zhixin, Huachao Ma, Jianxin Geng, Cuijuan Liu, Chaoyu Song i Yuguang Lv. "ZnO QDs/GO/g-C3N4 Preparation and Photocatalytic Properties of Composites". Micromachines 14, nr 8 (26.07.2023): 1501. http://dx.doi.org/10.3390/mi14081501.
Pełny tekst źródłaAydogdu, Seyda, Arzu Hatipoglu, Bahar Eren i Yelda Gurkan. "Photodegradation kinetics of organophosphorous with hydroxyl radicals: Experimental and theoretical study". Journal of the Serbian Chemical Society, nr 00 (2021): 56. http://dx.doi.org/10.2298/jsc210409056a.
Pełny tekst źródłaJi, Yi, Quan Zuo, Chuanshuang Chen, Yannan Liu, Yiyong Mai i Yongfeng Zhou. "A supramolecular single-site photocatalyst based on multi-to-one Förster resonance energy transfer". Chemical Communications 57, nr 34 (2021): 4174–77. http://dx.doi.org/10.1039/d1cc01339d.
Pełny tekst źródłaBudimir, Milica, Zoran Marković, Dragana Jovanović, Miloš Vujisić, Matej Mičušík, Martin Danko, Angela Kleinová, Helena Švajdlenková, Zdeno Špitalský i Biljana Todorović Marković. "Correction: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study". RSC Advances 10, nr 12 (2020): 7125. http://dx.doi.org/10.1039/d0ra90015j.
Pełny tekst źródłaHuang, Jinzhao, Song Liu, Lei Kuang, Yongdan Zhao, Tao Jiang, Shiyou Liu i Xijin Xu. "Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst". Journal of Environmental Sciences 25, nr 12 (grudzień 2013): 2487–91. http://dx.doi.org/10.1016/s1001-0742(12)60330-1.
Pełny tekst źródła