Gotowa bibliografia na temat „Quantum Dot - Cellular Imaging”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum Dot - Cellular Imaging”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Quantum Dot - Cellular Imaging"
Smith, Andrew M., Xiaohu Gao i Shuming Nie. "Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶". Photochemistry and Photobiology 80, nr 3 (2004): 377. http://dx.doi.org/10.1562/0031-8655(2004)080<0377:qdnfiv>2.0.co;2.
Pełny tekst źródłaSmith, Andrew M., Xiaohu Gao i Shuming Nie. "Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶". Photochemistry and Photobiology 80, nr 3 (2004): 377. http://dx.doi.org/10.1562/2004-06-21-ir-209.1.
Pełny tekst źródłaSmith, Andrew M., Xiaohu Gao i Shuming Nie. "Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶". Photochemistry and Photobiology 80, nr 3 (30.04.2007): 377–85. http://dx.doi.org/10.1111/j.1751-1097.2004.tb00102.x.
Pełny tekst źródłaJiang, Tongtong, Naiqiang Yin, Ling Liu, Jiangluqi Song, Qianpeng Huang, Lixin Zhu i Xiaoliang Xu. "A Au nanoflower@SiO2@CdTe/CdS/ZnS quantum dot multi-functional nanoprobe for photothermal treatment and cellular imaging". RSC Adv. 4, nr 45 (2014): 23630–36. http://dx.doi.org/10.1039/c4ra02965h.
Pełny tekst źródłaZhang, Yu-Hui, Ying-Ming Zhang, Yang Yang, Li-Xia Chen i Yu Liu. "Controlled DNA condensation and targeted cellular imaging by ligand exchange in a polysaccharide–quantum dot conjugate". Chemical Communications 52, nr 36 (2016): 6087–90. http://dx.doi.org/10.1039/c6cc01571a.
Pełny tekst źródłaZheng, Jianing, Arezou Ghazani, Qiang Song, Sawitri Mardyani, Warren Chan i Chen Wang. "Cellular Imaging and Surface Marker Labeling of Hematopoietic Cells Using Quantum Dot Bioconjugates". Laboratory Hematology 12, nr 2 (1.06.2006): 94–98. http://dx.doi.org/10.1532/lh96.04073.
Pełny tekst źródłaLee, Jiyeon, Gyoyeon Hwang, Yeon Sun Hong i Taebo Sim. "One step synthesis of quantum dot–magnetic nanoparticle heterodimers for dual modal imaging applications". Analyst 140, nr 8 (2015): 2864–68. http://dx.doi.org/10.1039/c4an02322f.
Pełny tekst źródłaZhang, Mengying, Brittany P. Bishop, Nicole L. Thompson, Kate Hildahl, Binh Dang, Olesya Mironchuk, Nina Chen, Reyn Aoki, Vincent C. Holmberg i Elizabeth Nance. "Quantum dot cellular uptake and toxicity in the developing brain: implications for use as imaging probes". Nanoscale Advances 1, nr 9 (2019): 3424–42. http://dx.doi.org/10.1039/c9na00334g.
Pełny tekst źródłaPark, Junwon, Sankarprasad Bhuniya, Hyunseung Lee, Young-Woock Noh, Yong Taik Lim, Jong Hwa Jung, Kwan Soo Hong i Jong Seung Kim. "A DTTA-ligated uridine–quantum dot conjugate as a bimodal contrast agent for cellular imaging". Chemical Communications 48, nr 26 (2012): 3218. http://dx.doi.org/10.1039/c2cc17555j.
Pełny tekst źródłaJooken, Stijn, Yovan de Coene, Olivier Deschaume, Dániel Zámbó, Tangi Aubert, Zeger Hens, Dirk Dorfs i in. "Enhanced electric field sensitivity of quantum dot/rod two-photon fluorescence and its relevance for cell transmembrane voltage imaging". Nanophotonics 10, nr 9 (21.05.2021): 2407–20. http://dx.doi.org/10.1515/nanoph-2021-0077.
Pełny tekst źródłaRozprawy doktorskie na temat "Quantum Dot - Cellular Imaging"
East, Daniel. "Characterisation and functional analysis of fission yeast tropomyosin mutants and development of quantum dot-antibody conjugates for cellular imaging". Thesis, University of Kent, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527598.
Pełny tekst źródłaWang, Weili. "Bright, compact and biocompatible quantum dot/rod-bioconjugates for Förster resonance energy transfer based ratiometric biosensing and cellular imaging". Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/16881/.
Pełny tekst źródłaHafian, Hilal. "IMAGERIE CELLULAIRE ET TISSULAIRE DE BIO-MARQUEURS TUMORAUX : EXCITATION MULTI-PHOTONIQUE DE QUANTUM DOTS CONJUGUES AVEC DES ANTICORPS DE DOMAINE SIMPLE". Thesis, Reims, 2016. http://www.theses.fr/2016REIMP201.
Pełny tekst źródłaThe QD-sdAbs conjugates are nano-sensors that combine a quantum dot (QD) and single domain antibodies (sdAbs). These fluorescent nanoprobes allow immunostaining on tissue sections and cells. The objective of this work is to show the interest of the multi-photon excitation for the detection and highly specific location of tumor biomarkers.Multi-photon excitation of anti CEA QD570-sdAb nanoprobes was investigated on human appendix and colon carcinoma slides for specifical detection and an optimization of the signal/auto-fluorescence emission ratio. The use of QD as excitation energy sensor for a QD-organic fluorophore FRET model has been shown. An innovative model for ultra-specific detection of CEA on MC38 CEA membrane cells by double immunostaining for a resonant energy transfer between QD and Alexa Fluor has been implemented.Our results shows the great interest of the multi-photon excitation compared to 458.9 nm excitation for discrimination and optimization of the signal / autofluorescence. It is 40 times higher at 800 nm two photon excitation has 458.9 nm one photon excitation on the studied sections.The use of conjugated QD556-sdAb anti-CEA and a conventional monoclonal antibody allows a double immunostaining on CEA on MC38 CEA membrane cells. The QD is use as multi-photon excitation energy nano-sensor enables an excitation selectivity and FRET between QD and Alexa Fluor. This configuration enables easy spectral detection of FRET and a very specific and sensitive location of membrane CEA. This is reinforced by the decrease in decay time of QD556 as donor of non radiative energy
Srivastava, Saket. "Probabilistic modeling of quantum-dot cellular automata". [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002399.
Pełny tekst źródłaZimmer, John P. (John Philip). "Quantum dot-based nanomaterials for biological imaging". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37888.
Pełny tekst źródłaVita.
Includes bibliographical references.
Quantum dot-based fluorescent probes were synthesized and applied to biological imaging in two distinct size regimes: (1) 100-1000 nm and (2) < 10 nm in diameter. The larger diameter range was accessed by doping CdSe/ZnS or CdS/ZnS quantum dots (QDs) into shells grown on the surfaces of pre-formed sub-micron SiO2 microspheres. The smaller diameter range was accessed with two different materials: very small InAs/ZnSe QDs and CdSe/ZnS QDs, each water solubilized with small molecule ligands chosen for their ability not only to stabilize QDs in water but also to minimize the total hydrodynamic size of the QD-ligand conjugates. Indium arsenide QDs were synthesized because nanocrystals of this material can be tuned to fluoresce in the near infrared (NIR) portion of the electromagnetic spectrum, especially in the 700-900 nm window where many tissues in the body absorb and scatter minimally, while maintaining core sizes of 2 nm or less. The QD-containing microspheres were used to image tumor vasculature in living animals, and to generate maps of size-dependent extravasation. With subcutaneously delivered nAs/ZnSe QDs, multiple lymph node mapping was demonstrated in vivo for the first time with nanocrystals. When administered intravenously, < 10 nm QDs escaped from the vasculature, or were efficiently cleared from circulation by the kidney. Both of these behaviors, previously unreported, mark key milestones in the realization of an ideal fluorescent QD probe for imaging specific compartments in vivo. Also presented in this thesis is the growth of single-crystalline cobalt nanorods through the oriented attachment of spherical cobalt nanocrystal monomers.
(cont.) When administered intravenously, < 10 nm QDs escaped from the vasculature, or were efficiently cleared from circulation by the kidney. Both of these behaviors, previously unreported, mark key milestones in the realization of an ideal fluorescent QD probe for imaging specific compartments in vivo. Also presented in this thesis is the growth of single-crystalline cobalt nanorods through the oriented attachment of spherical cobalt nanocrystal monomers.
by John P. Zimmer.
Ph.D.
Pelling, Stephen. "Terahertz imaging using a quantum dot detector". Thesis, Royal Holloway, University of London, 2011. http://repository.royalholloway.ac.uk/items/2311f672-f705-ab41-a5b9-78f87a192faf/8/.
Pełny tekst źródłaMandell, Eric S. "Theoretical studies of inter-dot potential barrier modulation in quantum-dot cellular automata". Virtual Press, 2001. http://liblink.bsu.edu/uhtbin/catkey/1221305.
Pełny tekst źródłaDepartment of Physics and Astronomy
Hendrichsen, Melissa K. "Thermal effect and fault tolerance in quantum dot cellular automata". Virtual Press, 2005. http://liblink.bsu.edu/uhtbin/catkey/1314329.
Pełny tekst źródłaDepartment of Physics and Astronomy
Kanuchok, Jonathan L. "The thermal effect and clocking in quantum-dot cellular automata". Virtual Press, 2004. http://liblink.bsu.edu/uhtbin/catkey/1286605.
Pełny tekst źródłaDepartment of Physics and Astronomy
Tung, Chia-Ching. "Implementation of multi-CLB designs using quantum-dot cellular automata /". Online version of thesis, 2010. http://hdl.handle.net/1850/11699.
Pełny tekst źródłaKsiążki na temat "Quantum Dot - Cellular Imaging"
Sasamal, Trailokya, Hari Mohan Gaur, Ashutosh Kumar Singh i Xiaoqing Wen. Quantum-Dot Cellular Automata Circuits for Nanocomputing Applications. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003361633.
Pełny tekst źródłaKumar, Naresh. Memory Design Using Quantum Dot Cellular Automata (QCA) Technology. Saarbrücken: LAP LAMBERT Academic Publishing, 2017.
Znajdź pełny tekst źródłaSridharan, K., i Vikramkumar Pudi. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16688-9.
Pełny tekst źródłaSasamal, Trailokya Nath, Ashutosh Kumar Singh i Anand Mohan. Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1823-2.
Pełny tekst źródłaSridharan, K., i Vikramkumar Pudi. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer, 2016.
Znajdź pełny tekst źródłaSridharan, K., i Vikramkumar Pudi. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer, 2015.
Znajdź pełny tekst źródłaSridharan, K., i Vikramkumar Pudi. Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer, 2015.
Znajdź pełny tekst źródłaDesign and Test of Digital Circuits by Quantum-Dot Cellular Automata. Artech House Publishers, 2007.
Znajdź pełny tekst źródłaMohan, Anand, Ashutosh Kumar Singh i Trailokya Nath Sasamal. Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective. Springer, 2020.
Znajdź pełny tekst źródłaMohan, Anand, Ashutosh Kumar Singh i Trailokya Nath Sasamal. Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective. Springer Singapore Pte. Limited, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "Quantum Dot - Cellular Imaging"
Rees, Kelly, Melissa Massey, Michael V. Tran i W. Russ Algar. "Dextran-Functionalized Quantum Dot Immunoconjugates for Cellular Imaging". W Quantum Dots, 143–68. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2_8.
Pełny tekst źródłaEast, Daniel Alistair, Michael Todd i Ian James Bruce. "Quantum Dot–Antibody Conjugates via Carbodiimide-Mediated Coupling for Cellular Imaging". W Quantum Dots: Applications in Biology, 67–83. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1280-3_5.
Pełny tekst źródłaLent, C. S., G. L. Snider, G. Bernstein, W. Porod, A. Orlov, M. Lieberman, T. Fehlner, M. Niemier i P. Kogge. "Quantum-Dot Cellular Automata". W Electron Transport in Quantum Dots, 397–431. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0437-5_10.
Pełny tekst źródłaKhanna, Vinod Kumar. "Quantum Dot Cellular Automata (QDCA)". W NanoScience and Technology, 323–39. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3625-2_19.
Pełny tekst źródłaSilva, Gabriel A. "Quantum Dot Methods for Cellular Neuroimaging". W Nanotechnology for Biology and Medicine, 169–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-31296-5_8.
Pełny tekst źródłaLent, Craig S., i Gregory L. Snider. "The Development of Quantum-Dot Cellular Automata". W Field-Coupled Nanocomputing, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43722-3_1.
Pełny tekst źródłaLent, Craig S., i Gregory L. Snider. "The Development of Quantum-Dot Cellular Automata". W Field-Coupled Nanocomputing, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45908-9_1.
Pełny tekst źródłaChang, Jerry C., i Sandra J. Rosenthal. "Single Quantum Dot Imaging in Living Cells". W Methods in Molecular Biology, 149–62. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-336-7_15.
Pełny tekst źródłaSen, Bibhash, Manojit Dutta, Divyam Saran i Biplab K. Sikdar. "An Efficient Multiplexer in Quantum-dot Cellular Automata". W Progress in VLSI Design and Test, 350–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31494-0_40.
Pełny tekst źródłaHänninen, Ismo, i Jarmo Takala. "Radix-4 Recoded Multiplier on Quantum-Dot Cellular Automata". W Lecture Notes in Computer Science, 118–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03138-0_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Quantum Dot - Cellular Imaging"
Dahan, Maxime. "Probing Cellular Events with Single Quantum Dot Imaging". W Laser Science. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsthb4.
Pełny tekst źródłaCourty, Sébastien, Marcel Zevenbergen, Cédric Bouzigues, Marie-Virginie Ehrensperger, Camilla Luccardini, Assa Sittner, Stéphane Bonneau i Maxime Dahan. "Single quantum dot imaging in live cells: toward a cellular GPS". W Biomedical Optics 2006, redaktorzy Marek Osinski, Kenji Yamamoto i Thomas M. Jovin. SPIE, 2006. http://dx.doi.org/10.1117/12.663348.
Pełny tekst źródłaHoshino, K., G. Bhave, N. Triesault, P. Joshi, A. Zubieta, V. Wang, K. V. Sokolov i X. J. Zhang. "Quantum dot based compact solid-state swept light source for hyperspectral cellular imaging". W 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627336.
Pełny tekst źródłaBernstein, Gary H. "Quantum-dot cellular automata". W the 40th conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/775832.775900.
Pełny tekst źródłaLent, Craig S. "Molecular quantum-dot cellular automata". W 2006 IEEE Workshop on Signal Processing Systems Design and Implementation. IEEE, 2006. http://dx.doi.org/10.1109/sips.2006.352542.
Pełny tekst źródłaSnider, Gregory L., Alexei O. Orlov, Vishwanath Joshi, Robin A. Joyce, Hua Qi, Kameshwar K. Yadavalli, Gary H. Bernstein, Thomas P. Fehlner i Craig S. Lent. "Electronic quantum-dot cellular automata". W 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734600.
Pełny tekst źródłaKrrabaj, Samedin, Ercan Canhasi i Xhevahir Bajrami. "Quantum-Dot cellular automata divider". W 2017 6th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2017. http://dx.doi.org/10.1109/meco.2017.7977215.
Pełny tekst źródłaGhosh, Bahniman, Shoubhik Gupta i Smriti Kumari. "Quantum dot cellular automata magnitude comparators". W 2012 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2012. http://dx.doi.org/10.1109/edssc.2012.6482766.
Pełny tekst źródłaLampreht, Blaz, Luka Stepancic, Igor Vizec, Bostjan Zankar, Miha Mraz, Iztok Lebar Bajec i Primoz Pecar. "Quantum-Dot Cellular Automata Serial Comparator". W 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools. IEEE, 2008. http://dx.doi.org/10.1109/dsd.2008.49.
Pełny tekst źródłaSen, Bibhash, Anshu S. Anand, Tanumoy Adak i Biplab K. Sikdar. "Thresholding using Quantum-dot Cellular Automata". W 2011 International Conference on Innovations in Information Technology (IIT). IEEE, 2011. http://dx.doi.org/10.1109/innovations.2011.5893848.
Pełny tekst źródłaRaporty organizacyjne na temat "Quantum Dot - Cellular Imaging"
Ropp, Chad, Zachary Cummins, Sanghee Nah, John T. Fourkas, Benjamin Shapiro i Edo Waks. Nanoscale Imaging with a Single Quantum Dot. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2011. http://dx.doi.org/10.21236/ada581052.
Pełny tekst źródłaMeier, Kristina. Quantum at LANL Quantum Ghost Imaging and Quantum Dot Single-Photon Sources. Office of Scientific and Technical Information (OSTI), styczeń 2023. http://dx.doi.org/10.2172/1921988.
Pełny tekst źródłaSinghal, Rahul. Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA). Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.196.
Pełny tekst źródła