Artykuły w czasopismach na temat „Quantum chromodynamics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quantum chromodynamics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quantum chromodynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 512, nr 11-12 (listopad 2000): 925–26. http://dx.doi.org/10.1002/andp.200051211-1210.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Llewellyn Smith, C. H. "Quantum chromodynamics". Contemporary Physics 29, nr 4 (lipiec 1988): 407–9. http://dx.doi.org/10.1080/00107518808213767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

't Hooft, G. "Quantum chromodynamics". Annalen der Physik 9, nr 11-12 (listopad 2000): 925–26. http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<925::aid-andp925>3.0.co;2-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cahill, RT. "On the Importance of Self-interaction in QCD". Australian Journal of Physics 44, nr 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Pełny tekst źródła
Streszczenie:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
Style APA, Harvard, Vancouver, ISO itp.
5

Chanyal, B. C., P. S. Bisht, Tianjun Li i O. P. S. Negi. "Octonion Quantum Chromodynamics". International Journal of Theoretical Physics 51, nr 11 (15.06.2012): 3410–22. http://dx.doi.org/10.1007/s10773-012-1222-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Ioffe, B. L. "Condensates in quantum chromodynamics". Physics of Atomic Nuclei 66, nr 1 (styczeń 2003): 30–43. http://dx.doi.org/10.1134/1.1540654.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

BROWER, RICHARD C., YUE SHEN i CHUNG-I. TAN. "CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS". International Journal of Modern Physics C 06, nr 05 (październik 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Pełny tekst źródła
Streszczenie:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
Style APA, Harvard, Vancouver, ISO itp.
8

Close, Frank. "Confirmation for quantum chromodynamics". Nature 353, nr 6344 (październik 1991): 498–99. http://dx.doi.org/10.1038/353498a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Vranas, P., M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger, V. Salapura, J. C. Sexton, R. Soltz i G. Bhanot. "Massively parallel quantum chromodynamics". IBM Journal of Research and Development 52, nr 1.2 (styczeń 2008): 189–97. http://dx.doi.org/10.1147/rd.521.0189.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Bakker, B. L. G., A. Bassetto, S. J. Brodsky, W. Broniowski, S. Dalley, T. Frederico, S. D. Głazek i in. "Light-front quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 251-252 (czerwiec 2014): 165–74. http://dx.doi.org/10.1016/j.nuclphysbps.2014.05.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

BUTTERWORTH, JON M. "QUANTUM CHROMODYNAMICS AT COLLIDERS". International Journal of Modern Physics A 21, nr 08n09 (10.04.2006): 1792–804. http://dx.doi.org/10.1142/s0217751x06032769.

Pełny tekst źródła
Streszczenie:
QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.
Style APA, Harvard, Vancouver, ISO itp.
12

CORNWALL, JOHN M. "ENTROPY IN QUANTUM CHROMODYNAMICS". Modern Physics Letters A 27, nr 09 (21.03.2012): 1230011. http://dx.doi.org/10.1142/s021773231230011x.

Pełny tekst źródła
Streszczenie:
We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including [Formula: see text]. The second is effective vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a [Formula: see text] condensate.
Style APA, Harvard, Vancouver, ISO itp.
13

Brower, Richard C. "Chirally extended quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 34 (kwiecień 1994): 210–12. http://dx.doi.org/10.1016/0920-5632(94)90347-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

SISSAKIAN, A. N., I. L. SOLOVTSOV i O. P. SOLOVTSOVA. "NONPERTURBATIVE β-FUNCTION IN QUANTUM CHROMODYNAMICS". Modern Physics Letters A 09, nr 26 (30.08.1994): 2437–43. http://dx.doi.org/10.1142/s0217732394002318.

Pełny tekst źródła
Streszczenie:
We propose a method by which it is possible to go beyond the scope of quantum chromodynamics perturbation theory. By using a new small parameter we formulate a systematic nonperturbative expansion and derive a renormalization β-function in quantum chromodynamics.
Style APA, Harvard, Vancouver, ISO itp.
15

Efimov, G. V. "Stability of Quantum Electrodynamics and Quantum Chromodynamics". Theoretical and Mathematical Physics 141, nr 1 (październik 2004): 1398–414. http://dx.doi.org/10.1023/b:tamp.0000043856.41940.3c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions". Uspekhi Fizicheskih Nauk 164, nr 8 (1994): 785. http://dx.doi.org/10.3367/ufnr.0164.199408a.0785.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kozlov, Mikhail G., Alexey V. Reznichenko i Victor S. Fadin. "Quantum chromodynamics at high energies". Siberian Journal of Physics 2, nr 4 (2007): 3–31. http://dx.doi.org/10.54238/1818-7994-2007-2-4-3-31.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kronfeld, A. S. "Quantum chromodynamics with advanced computing". Journal of Physics: Conference Series 125 (1.07.2008): 012067. http://dx.doi.org/10.1088/1742-6596/125/1/012067.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Horsley, Roger, i Wim Schoenmaker. "Transport Coefficients of Quantum Chromodynamics". Physical Review Letters 57, nr 23 (8.12.1986): 2894–96. http://dx.doi.org/10.1103/physrevlett.57.2894.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Dremin, Igor M. "Multiparticle production and quantum chromodynamics". Physics-Uspekhi 45, nr 5 (31.05.2002): 507–25. http://dx.doi.org/10.1070/pu2002v045n05abeh001088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Iwasaki, Yoichi, Kazuyuki Kanaya, Shogo Kaya, Sunao Sakai i Tomoteru Yoshié. "Quantum Chromodynamics with Many Flavors". Progress of Theoretical Physics Supplement 131 (1998): 415–26. http://dx.doi.org/10.1143/ptps.131.415.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Meyer-Ortmanns, Hildegard. "Phase transitions in quantum chromodynamics". Reviews of Modern Physics 68, nr 2 (1.04.1996): 473–598. http://dx.doi.org/10.1103/revmodphys.68.473.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Mateos, David. "String theory and quantum chromodynamics". Classical and Quantum Gravity 24, nr 21 (15.10.2007): S713—S739. http://dx.doi.org/10.1088/0264-9381/24/21/s01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Fritzsch, H. "The history of quantum chromodynamics". International Journal of Modern Physics A 34, nr 01 (10.01.2019): 1930001. http://dx.doi.org/10.1142/s0217751x19300011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Dremin, Igor M. "Multiparticle production and quantum chromodynamics". Uspekhi Fizicheskih Nauk 172, nr 5 (2002): 551. http://dx.doi.org/10.3367/ufnr.0172.200205b.0551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Gupta, Suraj N., i Stanley F. Radford. "Quark confinement in quantum chromodynamics". Physical Review D 32, nr 3 (1.08.1985): 781–83. http://dx.doi.org/10.1103/physrevd.32.781.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Larsson, Tomas I. "Nonperturbative propagators in quantum chromodynamics". Physical Review D 32, nr 4 (15.08.1985): 956–61. http://dx.doi.org/10.1103/physrevd.32.956.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Dremin, Igor M. "Quantum chromodynamics and multiplicity distributions". Physics-Uspekhi 37, nr 8 (31.08.1994): 715–36. http://dx.doi.org/10.1070/pu1994v037n08abeh000037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Sisakyan, A. N. "Variational expansions in quantum chromodynamics". Physics of Particles and Nuclei 30, nr 5 (wrzesień 1999): 461. http://dx.doi.org/10.1134/1.953115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bazavov, Alexei, i Johannes Heinrich Weber. "Color screening in quantum chromodynamics". Progress in Particle and Nuclear Physics 116 (styczeń 2021): 103823. http://dx.doi.org/10.1016/j.ppnp.2020.103823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Rapuano, F. "Quantum Chromodynamics on the lattice". Nuclear Physics A 623, nr 1-2 (wrzesień 1997): 81–89. http://dx.doi.org/10.1016/s0375-9474(97)00425-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bowler, Kenneth C., i Anthony J. G. Hey. "Parallel computing and quantum chromodynamics". Parallel Computing 25, nr 13-14 (grudzień 1999): 2111–34. http://dx.doi.org/10.1016/s0167-8191(99)00081-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Belyaev, V. M., i B. Yu Blok. "Charmed baryons in quantum chromodynamics". Zeitschrift für Physik C Particles and Fields 30, nr 1 (marzec 1986): 151–56. http://dx.doi.org/10.1007/bf01560689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sridhar, K., Sunanda Banerjee, Swagato Banerjee, Rahul Basu, Fawzi Boudjema, Michel Fontannaz, Rajiv Gavai i in. "Quantum chromodynamics: Working group report". Pramana 51, nr 1-2 (lipiec 1998): 297–304. http://dx.doi.org/10.1007/bf02827499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Andrianov, A. A., V. A. Andrianov, V. Yu Novozhilov i Yu V. Novozhilov. "Chiral bag in quantum chromodynamics". Theoretical and Mathematical Physics 74, nr 1 (styczeń 1988): 99–101. http://dx.doi.org/10.1007/bf01018217.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Dosch, H. G. "Nonperturbative methods in quantum chromodynamics". Progress in Particle and Nuclear Physics 33 (styczeń 1994): 121–99. http://dx.doi.org/10.1016/0146-6410(94)90044-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Banerjee, Sunanda. "Quantum chromodynamics studies at LEP2". Pramana 55, nr 1-2 (lipiec 2000): 85–100. http://dx.doi.org/10.1007/s12043-000-0086-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Gupta, Sourendu, D. Indumathi, S. Banerjee, R. Basu, M. Dittmar, RV Gavai, F. Gelis i in. "Quantum chromodynamics: Working group report". Pramana 55, nr 1-2 (lipiec 2000): 327–33. http://dx.doi.org/10.1007/s12043-000-0112-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Del Duca, Vittorio. "Quantum chromodynamics at hadron colliders". Pramana 67, nr 5 (listopad 2006): 861–73. http://dx.doi.org/10.1007/s12043-006-0098-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Ravindran, V., Pankaj Agrawal, Rahul Basu, Satyaki Bhattacharya, J. Blümlein, V. Del Duca, R. Harlander, D. Kosower, Prakash Mathews i Anurag Tripathi. "Working group report: Quantum chromodynamics". Pramana 67, nr 5 (listopad 2006): 983–92. http://dx.doi.org/10.1007/s12043-006-0107-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

SHIFMAN, M. "PERSISTENT CHALLENGES OF QUANTUM CHROMODYNAMICS". International Journal of Modern Physics A 21, nr 28n29 (20.11.2006): 5695–719. http://dx.doi.org/10.1142/s0217751x06034914.

Pełny tekst źródła
Streszczenie:
Unlike some models whose relevance to Nature is still a big question mark, Quantum Chromodynamics (QCD) will stay with us forever. QCD, born in 1973, is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark–gluon matter at high densities/temperatures (neutron stars); the vast horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, etc. Efforts aimed at solving the underlying theory, QCD, continue. In a remarkable entanglement, theoretical constructions of the 1970's and 1990's combine with today's ideas based on holographic description and strong–weak coupling duality, to provide new insights and a deeper understanding.
Style APA, Harvard, Vancouver, ISO itp.
42

NISHIJIMA, KAZUHIKO, i IZURU DEMIZU. "RENORMALIZATION CONSTANTS IN QUANTUM CHROMODYNAMICS". International Journal of Modern Physics A 13, nr 09 (10.04.1998): 1507–13. http://dx.doi.org/10.1142/s0217751x98000664.

Pełny tekst źródła
Streszczenie:
The gauge dependence of the renormalization constant of the quark field has been studied with the help of the renormalization group method. In the case of the color gauge field an exact evaluation of the renormalization constant is feasible because of the presence of a sum rule, but in the absence of the corresponding sum rule, only a qualitative evaluation is possible for the quark field.
Style APA, Harvard, Vancouver, ISO itp.
43

Luo, Xiang-Qian, Qizhou Chen, Shouhong Guo, Xiyan Fang i Jinming Liu. "Glueball masses in quantum chromodynamics". Nuclear Physics B - Proceedings Supplements 53, nr 1-3 (luty 1997): 243–45. http://dx.doi.org/10.1016/s0920-5632(96)00626-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Gavai, Rajiv V. "Lattice quantum chromodynamics: Some topics". Pramana 61, nr 5 (listopad 2003): 889–99. http://dx.doi.org/10.1007/bf02704457.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Forghan, B., i M. R. Tanhayi. "Krein regularization of quantum chromodynamics". Modern Physics Letters A 30, nr 26 (13.08.2015): 1550126. http://dx.doi.org/10.1142/s0217732315501266.

Pełny tekst źródła
Streszczenie:
In this paper, we use Krein regularization to study certain standard computations in quantum chromodynamics (QCD). In this method, the auxiliary modes[Formula: see text]— those with negative norms[Formula: see text]— are employed to calculate the quark self-energy, vacuum polarizations and vertex functions. We explicitly show that after making use of these modes and by taking into account the quantum metric fluctuation for the problems at hand, the conventional results can indeed be reproduced; but with the advantage of finite answers which require fewer mathematical procedures. An obvious merit of this approach is that the theory is naturally renormalized. The ultraviolet (UV) divergences disappear due to the presence of negative norm state, similar to the Pauli–Villars regularization method. We compare the answers of Krein regularization with the results of calculations which have been done in Hilbert space.
Style APA, Harvard, Vancouver, ISO itp.
46

Dokshitzer, Yuri L. "Quantum chromodynamics and hadron dynamics". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, nr 1779 (15.02.2001): 309–24. http://dx.doi.org/10.1098/rsta.2000.0728.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Forshaw, Jeffrey R., Douglas A. Ross i Carl R. Schmidt. "Quantum Chromodynamics and the Pomeron". Physics Today 51, nr 10 (październik 1998): 86–88. http://dx.doi.org/10.1063/1.882397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Bethke, S. "Experimental verifications of quantum chromodynamics". Modern Physics Letters A 34, nr 17 (7.06.2019): 1950225. http://dx.doi.org/10.1142/s0217732319502250.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Huang, Tao, i Zheng Huang. "Quantum chromodynamics in background fields". Physical Review D 39, nr 4 (15.02.1989): 1213–20. http://dx.doi.org/10.1103/physrevd.39.1213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Mathews, Prakash, Rahul Basu, D. Indumathi, E. Laenen, Swapan Majhi, Anuradha Misra, Asmita Mukherjee i W. Vogelsang. "Working group report: Quantum chromodynamics". Pramana 63, nr 6 (grudzień 2004): 1367–79. http://dx.doi.org/10.1007/bf02704902.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii