Gotowa bibliografia na temat „Quantum channels on a graph state”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Quantum channels on a graph state”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Quantum channels on a graph state"
Liao, Longxia, Xiaoqi Peng, Jinjing Shi i Ying Guo. "Graph state-based quantum authentication scheme". International Journal of Modern Physics B 31, nr 09 (10.04.2017): 1750067. http://dx.doi.org/10.1142/s0217979217500679.
Pełny tekst źródłaHonrubia, Efrén, i Ángel S. Sanz. "Graph Approach to Quantum Teleportation Dynamics". Quantum Reports 2, nr 3 (10.07.2020): 352–77. http://dx.doi.org/10.3390/quantum2030025.
Pełny tekst źródłaPiveteau, Christophe, i Joseph M. Renes. "Quantum message-passing algorithm for optimal and efficient decoding". Quantum 6 (23.08.2022): 784. http://dx.doi.org/10.22331/q-2022-08-23-784.
Pełny tekst źródłaLowe, Angus, Matija Medvidović, Anthony Hayes, Lee J. O'Riordan, Thomas R. Bromley, Juan Miguel Arrazola i Nathan Killoran. "Fast quantum circuit cutting with randomized measurements". Quantum 7 (2.03.2023): 934. http://dx.doi.org/10.22331/q-2023-03-02-934.
Pełny tekst źródłaErementchouk, Mikhail, i Michael N. Leuenberger. "Entanglement Dynamics of Second Quantized Quantum Fields". ISRN Mathematical Physics 2014 (28.01.2014): 1–19. http://dx.doi.org/10.1155/2014/264956.
Pełny tekst źródłaColafranceschi, Eugenia, i Gerardo Adesso. "Holographic entanglement in spin network states: A focused review". AVS Quantum Science 4, nr 2 (czerwiec 2022): 025901. http://dx.doi.org/10.1116/5.0087122.
Pełny tekst źródłaBannink, Tom, Jop Briët, Farrokh Labib i Hans Maassen. "Quasirandom quantum channels". Quantum 4 (16.07.2020): 298. http://dx.doi.org/10.22331/q-2020-07-16-298.
Pełny tekst źródłaLi, Si-Chen, Bang-Ying Tang, Han Zhou, Hui-Cun Yu, Bo Liu, Wan-Rong Yu i Bo Liu. "First Request First Service Entanglement Routing Scheme for Quantum Networks". Entropy 24, nr 10 (1.10.2022): 1404. http://dx.doi.org/10.3390/e24101404.
Pełny tekst źródłaBenjamin, Simon C., Daniel E. Browne, Joe Fitzsimons i John J. L. Morton. "Brokered graph-state quantum computation". New Journal of Physics 8, nr 8 (23.08.2006): 141. http://dx.doi.org/10.1088/1367-2630/8/8/141.
Pełny tekst źródłaAntonio, B., D. Markham i J. Anders. "Adiabatic graph-state quantum computation". New Journal of Physics 16, nr 11 (26.11.2014): 113070. http://dx.doi.org/10.1088/1367-2630/16/11/113070.
Pełny tekst źródłaRozprawy doktorskie na temat "Quantum channels on a graph state"
MEDEIROS, Rex Antonio da Costa. "Zero-Error capacity of quantum channels". Universidade Federal de Campina Grande, 2008. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1320.
Pełny tekst źródłaMade available in DSpace on 2018-08-01T21:11:37Z (GMT). No. of bitstreams: 1 REX ANTONIO DA COSTA MEDEIROS - TESE PPGEE 2008..pdf: 1089371 bytes, checksum: ea0c95501b938e0d466779a06faaa4f6 (MD5) Previous issue date: 2008-05-09
Nesta tese, a capacidade erro-zero de canais discretos sem memória é generalizada para canais quânticos. Uma nova capacidade para a transmissão de informação clássica através de canais quânticos é proposta. A capacidade erro-zero de canais quânticos (CEZQ) é definida como sendo a máxima quantidade de informação por uso do canal que pode ser enviada através de um canal quântico ruidoso, considerando uma probabilidade de erro igual a zero. O protocolo de comunicação restringe palavras-código a produtos tensoriais de estados quânticos de entrada, enquanto que medições coletivas entre várias saídas do canal são permitidas. Portanto, o protocolo empregado é similar ao protocolo de Holevo-Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando elementos da teoria de grafos. Esta definição equivalente é usada para demonstrar propriedades de famílias de estados quânticos e medições que atingem a CEZQ. É mostrado que a capacidade de um canal quântico num espaço de Hilbert de dimensão d pode sempre ser alcançada usando famílias compostas de, no máximo,d estados puros. Com relação às medições, demonstra-se que medições coletivas de von Neumann são necessárias e suficientes para alcançar a capacidade. É discutido se a CEZQ é uma generalização não trivial da capacidade erro-zero clássica. O termo não trivial refere-se a existência de canais quânticos para os quais a CEZQ só pode ser alcançada através de famílias de estados quânticos não-ortogonais e usando códigos de comprimento maior ou igual a dois. É investigada a CEZQ de alguns canais quânticos. É mostrado que o problema de calcular a CEZQ de canais clássicos-quânticos é puramente clássico. Em particular, é exibido um canal quântico para o qual conjectura-se que a CEZQ só pode ser alcançada usando uma família de estados quânticos não-ortogonais. Se a conjectura é verdadeira, é possível calcular o valor exato da capacidade e construir um código de bloco quântico que alcança a capacidade. Finalmente, é demonstrado que a CEZQ é limitada superiormente pela capacidade de Holevo-Schumacher-Westmoreland.
Tan, Si Hui Ph D. Massachusetts Institute of Technology. "Quantum state discrimination with bosonic channels and Gaussian states". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/79253.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 161-166).
Discriminating between quantum states is an indispensable part of quantum information theory. This thesis investigates state discrimination of continuous quantum variables, focusing on bosonic communication channels and Gaussian states. The specific state discrimination problems studied are (a) quantum illumination and (b) optimal measurements for decoding bosonic channels. Quantum illumination is a technique for detection and imaging which uses entanglement between a probe and an ancilla to enhance sensitivity. I shall show how entanglement can help with the discrimination between two noisy and lossy bosonic channels, one in which a target reflects back a small part of the probe light, and the other in which all probe light is lost. This enhancement is obtained even though the channels are entanglement-breaking. The main result of this study is that, under optimum detection in the asymptotic limit of many detection trials, 6 dB of improvement in the error exponent can be achieved by using an entangled state as compared to a classical state. In the study of optimal measurements for decoding bosonic channels, I shall present an alternative measurement to the pretty-good measurement for attaining the classical capacity of the lossy bosonic channel given product coherent-state inputs. This new measurement has the feature that, at each step of the measurement, only projective measurements are needed. The measurement is a sequential one: the number of steps required is exponential in the code length, and the error rate of this measurement goes to zero in the limit of large code length. Although not physically practical in itself, this new measurement has a simple physical interpretation in terms of collective energy measurements, and may give rise to an implementation of an optimal measurement for lossy bosonic channels. The two problems studied in my thesis are examples of how state discrimination can be useful in solving problems by using quantum mechanical properties such as entanglement and entangling measurements.
by Si Hui Tan.
Ph.D.
Bondarenko, Dmytro [Verfasser]. "Constructing networks of quantum channels for state preparation / Dmytro Bondarenko". Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/1235138682/34.
Pełny tekst źródłaQu, Zhen, i Ivan B. Djordjevic. "Four-Dimensionally Multiplexed Eight-State Continuous-Variable Quantum Key Distribution Over Turbulent Channels". IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2017. http://hdl.handle.net/10150/626439.
Pełny tekst źródłaSun, Xiaole, Ivan B. Djordjevic i Mark A. Neifeld. "Secret Key Rates and Optimization of BB84 and Decoy State Protocols Over Time-Varying Free-Space Optical Channels". IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621687.
Pełny tekst źródłaYang, Min-Chieh, i 楊閔傑. "Quantum Error Correction for Noisy Quantum Channels in Optical Coherent State Quantum Information Processing". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/26414397901156461604.
Pełny tekst źródła國立中正大學
物理學系暨研究所
101
Starting from the derived exact master equation from Zhang, et al. , we study the photon-loss dissipation of optical coherent-state qubits coupled to a reservoir at zero temperature. We consider an environment of Lorentzian coupling spectrum and apply the results of single qubit from solving the master equation to a pair of spatially separated entangled qubits subject to local environment noises. We demonstrate that the entanglement dynamics of the system can be switched between Markovian and non-Markovian limits by controlling the coupling bandwidth to the environment and their coupling efficiency can be manipulated by tuning the coupling detuning. Entanglement sudden death may take place with qubits of larger amplitude(|\alpha| > 0.6). Besides, through concurrence, fidelity and von Neumann entropy, we numerically verified that a more efficient error correction efficiency can be achieved by employing phase-flip scheme on the system proposed by Munhoz, et al. which subject to a photon-loss channel.
Li, Pei-Hsaun, i 李佩璇. "Entanglement Purification for Noisy Optical Coherent-State Quantum Channels". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/39645791785660464754.
Pełny tekst źródła國立中正大學
物理學系暨研究所
101
We investigate an entanglement purification protocol suggested by Jeong and Ralph for coherent-state quantum information processing. We study in detail the purification of a (quasi) Bell-state quantum channel subject to photon loss utilizing this protocol and also extend its application to general Werner-type mixed states. We compare this protocol with its discrete-variable counterpart and show that a lower fidelity threshold and higher efficiency for purification are attained.
Książki na temat "Quantum channels on a graph state"
Beenakker, Carlo W. J. Classical and quantum optics. Redaktorzy Gernot Akemann, Jinho Baik i Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.36.
Pełny tekst źródłaCzęści książek na temat "Quantum channels on a graph state"
Finco, Domenico. "On the Ground State for the NLS Equation on a General Graph". W Advances in Quantum Mechanics, 153–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58904-6_9.
Pełny tekst źródłaTakahashi, Yasuhiro. "Simple Sets of Measurements for Universal Quantum Computation and Graph State Preparation". W Theory of Quantum Computation, Communication, and Cryptography, 26–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18073-6_3.
Pełny tekst źródłaKrech, W., i F. Seume. "Quantum Decay of the Coulomb Blockade State in an Array of Two Ultrasmall Tunnel Junctions with General Channels of Tunneling". W Springer Series in Electronics and Photonics, 71–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77274-0_7.
Pełny tekst źródłaKaye, Phillip, Raymond Laflamme i Michele Mosca. "Superdense Coding and Quantum Teleportation". W An Introduction to Quantum Computing. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198570004.003.0008.
Pełny tekst źródłaGuha Majumdar, Mrittunjoy. "Can We Entangle Entanglement?" W Topics on Quantum Information Science [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98535.
Pełny tekst źródła"Second quantization". W The Quantum Classical Theory, redaktor Gert D. Billing. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195146196.003.0008.
Pełny tekst źródłaJasim, Omer K., Safia Abbas, El-Sayed M. El-Horbaty i Abdel-Badeeh M. Salem. "CCCE". W Advances in Systems Analysis, Software Engineering, and High Performance Computing, 71–99. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9834-5.ch004.
Pełny tekst źródłaJasim, Omer K., Safia Abbas, El-Sayed M. El-Horbaty i Abdel-Badeeh M. Salem. "CCCE". W Cloud Security, 524–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8176-5.ch027.
Pełny tekst źródłaChristine Almeida Silva, Anielle, Jerusa Maria de Oliveira, Kelen Talita Romão da Silva, Francisco Rubens Alves dos Santos, João Paulo Santos de Carvalho, Rose Kethelyn Souza Avelino, Eurípedes Alves da Silva Filho i in. "Fluorescent Markers: Proteins and Nanocrystals". W Bioluminescence [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96675.
Pełny tekst źródłaStreszczenia konferencji na temat "Quantum channels on a graph state"
Bae, Joonwoo. "Optimal state discrimination over quantum channels". W Quantum Communications and Quantum Imaging XVII, redaktor Keith S. Deacon. SPIE, 2019. http://dx.doi.org/10.1117/12.2525569.
Pełny tekst źródłaYan, Lei, Peng Luo, Hanyu Cui, Ronghua Shi i Ying Guo. "Quantum Route Selection based on Graph State". W 2016 4th International Conference on Machinery, Materials and Computing Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmct-16.2016.224.
Pełny tekst źródłaPopov, Anton I., Igor Y. Popov i Dmitry A. Gerasimov. "Resonance state completeness problem for quantum graph". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992567.
Pełny tekst źródłaXie, Wenbo, Wenhan Dai i Don Towsley. "Graph State Distribution: Integer Formulation". W 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2021. http://dx.doi.org/10.1109/qce52317.2021.00085.
Pełny tekst źródłaUlibarrena, Andrés, Jonathan W. Webb, Federico Graselli, Joseph Ho, Gláucia Murta i Alessandro Fedrizzi. "Photonic graph state anonymous quantum conference key agreement". W Quantum Technology: Driving Commercialisation of an Enabling Science III, redaktorzy Kai Bongs, Miles J. Padgett, Alessandro Fedrizzi i Alberto Politi. SPIE, 2023. http://dx.doi.org/10.1117/12.2644977.
Pełny tekst źródłaGilbert, Gerald, Michael Hamrick i Yaakov S. Weinstein. "Construction of Cluster States Using Graph State Equivalence Classes". W International Conference on Quantum Information. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/icqi.2007.jwc67.
Pełny tekst źródłaRenault, P., J. Nokkala, N. Treps, J. Piilo i V. Parigi. "Spectral Density and non Markovianity Measurements via Graph State Simulation". W Quantum Information and Measurement. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/qim.2021.w3a.2.
Pełny tekst źródłaBoroson, Don, Nicholas Hardy, Matthew Grein, P. Benjamin Dixon, Catherine Lee, Scott Hamilton i Neal Spellmeyer. "An Architecture for Synchronizing Photonic Bell State Measurements Across Lossy, Time-Varying Channels". W Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qth7b.18.
Pełny tekst źródłaChang, Chun-Hung, Xuan Zhu i Olivier Pfister. "Experimental Generation of a Multipartite Entangled Graph State in the Quantum Optical Frequency Comb". W Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qm4b.6.
Pełny tekst źródłaGualdi, Giulia, Irene Marzoli i Paolo Tombesi. "Spin-Chains as Quantum Channels for Qubit-State Transfer". W 2009 Third International Conference on Quantum, Nano and Micro Technologies (ICQNM). IEEE, 2009. http://dx.doi.org/10.1109/icqnm.2009.16.
Pełny tekst źródła