Artykuły w czasopismach na temat „Quadratic stabilization”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Quadratic stabilization.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Quadratic stabilization”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Balandin, D. V., i M. M. Kogan. "Optimal robust linear-quadratic stabilization". Differential Equations 43, nr 11 (listopad 2007): 1611–15. http://dx.doi.org/10.1134/s001226610711016x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ji, Zhijian, Long Wang * i Guangming Xie. "Quadratic stabilization of switched systems". International Journal of Systems Science 36, nr 7 (10.06.2005): 395–404. http://dx.doi.org/10.1080/00207720500140003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

YASUDA, Kazunori. "Quadratic Stability and Quadratic Stabilization of Linear Descriptor Systems". Transactions of the Society of Instrument and Control Engineers 35, nr 2 (1999): 208–12. http://dx.doi.org/10.9746/sicetr1965.35.208.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Wu Jian-Rong. "Quadratic stability and quadratic stabilization for singular system families". Acta Physica Sinica 53, nr 2 (2004): 325. http://dx.doi.org/10.7498/aps.53.325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

YADAV, KIRAN, i A. K. MALIK. "An Orthogonal Stabilization of Quadratic and Generalized Quadratic Functional Equations". Journal of Ultra Scientist of Physical Sciences Section A 31, nr 8 (26.08.2019): 69–78. http://dx.doi.org/10.22147/jusps-a/310801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

SUZUKI, Masayuki, Shigeaki KOBAYASHI i Yoshinori ANDO. "Quadratic Stabilization of Singularly Perturbed Systems". Transactions of the Society of Instrument and Control Engineers 32, nr 11 (1996): 1493–500. http://dx.doi.org/10.9746/sicetr1965.32.1493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Khlebnikov, M. V. "Quadratic stabilization of bilinear control systems". Automation and Remote Control 77, nr 6 (czerwiec 2016): 980–91. http://dx.doi.org/10.1134/s0005117916060047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

UEZATO, Eiho, i Masao IKEDA. "Quadratic stabilization of Linear Descriptor systems". Transactions of the Institute of Systems, Control and Information Engineers 9, nr 7 (1996): 313–21. http://dx.doi.org/10.5687/iscie.9.313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yasuda, K. "Decentralized Quadratic Stabilization of Interconnected Systems". IFAC Proceedings Volumes 26, nr 2 (lipiec 1993): 499–502. http://dx.doi.org/10.1016/s1474-6670(17)48991-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Dong, YaLi, JiaoJiao Fan i ShengWei Mei. "Quadratic stabilization of switched nonlinear systems". Science in China Series F: Information Sciences 52, nr 6 (czerwiec 2009): 999–1006. http://dx.doi.org/10.1007/s11432-009-0111-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Feng, Jun’e, i Weihai Zhang. "Quadratic stabilization for uncertain stochastic systems". Journal of Control Theory and Applications 3, nr 3 (sierpień 2005): 252–58. http://dx.doi.org/10.1007/s11768-005-0044-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

YASUDA, Kazunori, i Fumiko NOSO. "Decentralized Quadratic Stabilization of Interconnected Descriptor Systems". Transactions of the Society of Instrument and Control Engineers 33, nr 7 (1997): 609–15. http://dx.doi.org/10.9746/sicetr1965.33.609.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Khlebnikov, M. V. "Quadratic Stabilization of Discrete-Time Bilinear Systems". Automation and Remote Control 79, nr 7 (lipiec 2018): 1222–39. http://dx.doi.org/10.1134/s0005117918070044.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Corless, M., M. A. Rotea i M. Swei. "System Order Reduction in Quadratic Stabilization Problems *". IFAC Proceedings Volumes 26, nr 2 (lipiec 1993): 207–10. http://dx.doi.org/10.1016/s1474-6670(17)48927-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Maniar, Lahcen, Mohamed Oumoun i Jean-Claude Vivalda. "On the stabilization of quadratic nonlinear systems". European Journal of Control 35 (maj 2017): 28–33. http://dx.doi.org/10.1016/j.ejcon.2017.03.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Khlebnikov, Michael. "Quadratic Stabilization of Discrete-Time Bilinear Systems". Автоматика и телемеханика, nr 7 (2018): 59–79. http://dx.doi.org/10.31857/s000523100000267-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Khlebnikov, Mikhail V. "Robust Quadratic Stabilization of Bilinear Control Systems". IFAC-PapersOnLine 48, nr 11 (2015): 434–39. http://dx.doi.org/10.1016/j.ifacol.2015.09.224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhong, Jianghua, Daizhan Cheng i Xiaoming Hu. "Constructive stabilization for quadratic input nonlinear systems". Automatica 44, nr 8 (sierpień 2008): 1996–2005. http://dx.doi.org/10.1016/j.automatica.2008.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Abdelmalek, Ibtissem, Noureddine Goléa i Mohamed Hadjili. "A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy Models". International Journal of Applied Mathematics and Computer Science 17, nr 1 (1.03.2007): 39–51. http://dx.doi.org/10.2478/v10006-007-0005-4.

Pełny tekst źródła
Streszczenie:
A New Fuzzy Lyapunov Approach to Non-Quadratic Stabilization of Takagi-Sugeno Fuzzy ModelsIn this paper, new non-quadratic stability conditions are derived based on the parallel distributed compensation scheme to stabilize Takagi-Sugeno (T-S) fuzzy systems. We use a non-quadratic Lyapunov function as a fuzzy mixture of multiple quadratic Lyapunov functions. The quadratic Lyapunov functions share the same membership functions with the T-S fuzzy model. The stability conditions we propose are less conservative and stabilize also fuzzy systems which do not admit a quadratic stabilization. The proposed approach is based on two assumptions. The first one relates to a proportional relation between multiple Lyapunov functions and the second one considers an upper bound to the time derivative of the premise membership functions. To illustrate the advantages of our proposal, four examples are given.
Style APA, Harvard, Vancouver, ISO itp.
20

Kozlov, V. V. "Restrictions of Quadratic Forms to Lagrangian Planes, Quadratic Matrix Equations, and Gyroscopic Stabilization". Functional Analysis and Its Applications 39, nr 4 (październik 2005): 271–83. http://dx.doi.org/10.1007/s10688-005-0048-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Dai, Tianyu, Mario Sznaier i Biel Roig Solvas. "Data-Driven Quadratic Stabilization of Continuous LTI Systems". IFAC-PapersOnLine 53, nr 2 (2020): 3965–70. http://dx.doi.org/10.1016/j.ifacol.2020.12.2252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

YASUDA, Kazunori, i Minari YAMASAKI. "Decentralized Quadratic Stabilization of Interconnected Discrete-Time Systems". Transactions of the Society of Instrument and Control Engineers 33, nr 1 (1997): 28–34. http://dx.doi.org/10.9746/sicetr1965.33.28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Hu, Tingshu, Liqiang Ma i Zongli Lin. "Stabilization of Switched Systems via Composite Quadratic Functions". IEEE Transactions on Automatic Control 53, nr 11 (grudzień 2008): 2571–85. http://dx.doi.org/10.1109/tac.2008.2006933.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Jenq-Lang Wu. "Simultaneous Quadratic Stabilization for Discrete-Time Nonlinear Systems". IEEE Transactions on Automatic Control 55, nr 6 (czerwiec 2010): 1443–48. http://dx.doi.org/10.1109/tac.2010.2044279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wei-Jie Mao i Jian Chu. "Quadratic stability and stabilization of dynamic interval systems". IEEE Transactions on Automatic Control 48, nr 6 (czerwiec 2003): 1007–12. http://dx.doi.org/10.1109/tac.2003.812784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Ishii, Hideaki, i Bruce A. Francis. "QUADRATIC STABILIZATION OF SAMPLED-DATA SYSTEMS WITH QUANTIZATION". IFAC Proceedings Volumes 35, nr 1 (2002): 67–72. http://dx.doi.org/10.3182/20020721-6-es-1901.00092.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Simpson-Porco, John W., Florian Dorfler i Francesco Bullo. "Voltage Stabilization in Microgrids via Quadratic Droop Control". IEEE Transactions on Automatic Control 62, nr 3 (marzec 2017): 1239–53. http://dx.doi.org/10.1109/tac.2016.2585094.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sugimoto, Kenji. "Observer-Based Quadratic Stabilization with Dominant Pole Placement". IFAC Proceedings Volumes 33, nr 14 (wrzesień 2000): 459–63. http://dx.doi.org/10.1016/s1474-6670(17)36271-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kar, I. N. "Quadratic stabilization of a collection of linear systems". International Journal of Systems Science 33, nr 2 (styczeń 2002): 153–60. http://dx.doi.org/10.1080/00207720110091721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ishii, Hideaki, i Bruce A. Francis. "Quadratic stabilization of sampled-data systems with quantization". Automatica 39, nr 10 (październik 2003): 1793–800. http://dx.doi.org/10.1016/s0005-1098(03)00179-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Amato, F., R. Ambrosino, C. Cosentino, G. De Tommasi i A. Merola. "Stabilization of impulsive quadratic systems over polytopic sets". Nonlinear Analysis: Hybrid Systems 7, nr 1 (luty 2013): 16–27. http://dx.doi.org/10.1016/j.nahs.2012.07.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Samba, S., i J. C. Vivalda. "Global stabilization of a class of quadratic systems". Automatica 28, nr 5 (wrzesień 1992): 1057–61. http://dx.doi.org/10.1016/0005-1098(92)90163-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Nikitin, Sergey. "Stabilization of Nonlinear Systems with Semi-Quadratic Cost". Acta Applicandae Mathematicae 105, nr 3 (19.08.2008): 373–83. http://dx.doi.org/10.1007/s10440-008-9279-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

de Souza, Carlos E., i Daniel Coutinho. "Local Stabilization of Markov Jump Nonlinear Quadratic Systems". IFAC Proceedings Volumes 47, nr 3 (2014): 8725–30. http://dx.doi.org/10.3182/20140824-6-za-1003.00905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Zhang, Minsong. "Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps". Mathematical Problems in Engineering 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/904607.

Pełny tekst źródła
Streszczenie:
This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs) and linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the proposed methodology.
Style APA, Harvard, Vancouver, ISO itp.
36

Krokavec, Dušan, i Anna Filasová. "Quadratic Stabilization of Linear Uncertain Positive Discrete-Time Systems". Symmetry 13, nr 9 (17.09.2021): 1725. http://dx.doi.org/10.3390/sym13091725.

Pełny tekst źródła
Streszczenie:
The paper provides extended methods for control linear positive discrete-time systems that are subject to parameter uncertainties, reflecting structural system parameter constraints and positive system properties when solving the problem of system quadratic stability. By using an extension of the Lyapunov approach, system quadratic stability is presented to become apparent in pre-existing positivity constraints in the design of feedback control. The approach prefers constraints representation in the form of linear matrix inequalities, reflects the diagonal stabilization principle in order to apply to positive systems the idea of matrix parameter positivity, applies observer-based linear state control to assert closed-loop system quadratic stability and projects design conditions, allowing minimization of an undesirable impact on matching parameter uncertainties. The method is utilised in numerical examples to illustrate the technique when applying the above strategy.
Style APA, Harvard, Vancouver, ISO itp.
37

Basu, Rabeya. "A note on general quadratic groups". Journal of Algebra and Its Applications 17, nr 11 (listopad 2018): 1850217. http://dx.doi.org/10.1142/s0219498818502171.

Pełny tekst źródła
Streszczenie:
We deduce an analogue of Quillen–Suslin’s local-global principle for the transvection subgroups of the general quadratic (Bak’s unitary) groups. As an application, we revisit the result of Bak–Petrov–Tang on injective stabilization for the [Formula: see text]-functor of the general quadratic groups.
Style APA, Harvard, Vancouver, ISO itp.
38

Teng, C. P., i J. Angeles. "A Sequential-Quadratic-Programming Algorithm Using Orthogonal Decomposition With Gerschgorin Stabilization". Journal of Mechanical Design 123, nr 4 (1.06.1999): 501–9. http://dx.doi.org/10.1115/1.1416693.

Pełny tekst źródła
Streszczenie:
This paper introduces a new approach to sequential quadratic programming. Upon application of the orthogonal-decomposition algorithm and the Gerschgorin Theorem for the stabilization of the Hessian matrix in the quadratic-programming solution, this novel approach offers an alternative to existing methods that, additionally, dispenses with a feasible initial guess.
Style APA, Harvard, Vancouver, ISO itp.
39

Zhang, Da-Qing, Qing-Ling Zhang i Yue-Peng Chen. "Controllability and quadratic stability quadratic stabilization of discrete-time interval systems—an LMI approach". IMA Journal of Mathematical Control and Information 23, nr 4 (1.12.2006): 413–31. http://dx.doi.org/10.1093/imamci/dni070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Yahyaoui, Soufiane, i Mohamed Ouzahra. "Quadratic optimal control and feedback stabilization of bilinear systems". Optimal Control Applications and Methods 42, nr 4 (18.01.2021): 878–90. http://dx.doi.org/10.1002/oca.2704.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

YAMAMOTO, Shigeru, Takahiro UEDA i Hidenori KIMURA. "Quadratic Stabilization Approach to Coupled Three-Inertia Benchmark Problem". Transactions of the Society of Instrument and Control Engineers 32, nr 7 (1996): 1027–34. http://dx.doi.org/10.9746/sicetr1965.32.1027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

SUGIMOTO, Kenji. "Quadratic Stabilization of Servo Systems with Dominant Pole Placement". Transactions of the Society of Instrument and Control Engineers 34, nr 10 (1998): 1419–24. http://dx.doi.org/10.9746/sicetr1965.34.1419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Zuber, I. E., i A. Kh Gelig. "Global stabilization of nonlinear systems by quadratic Lyapunov functions". Vestnik St. Petersburg University: Mathematics 43, nr 1 (marzec 2010): 49–53. http://dx.doi.org/10.3103/s1063454110010097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Feng, G., S. G. Cao, N. W. Rees i J. Ma. "Quadratic Stabilization of Fuzzy Control Systems Using Output Feedback". Journal of Intelligent and Fuzzy Systems 5, nr 3 (1997): 219–27. http://dx.doi.org/10.3233/ifs-1997-5304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Khlebnikov, M. V. "Quadratic stabilization of bilinear systems: Linear dynamical output feedback". Automation and Remote Control 78, nr 9 (wrzesień 2017): 1545–58. http://dx.doi.org/10.1134/s0005117917090016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Feng, G. "Approaches to quadratic stabilization of uncertain fuzzy dynamic systems". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48, nr 6 (czerwiec 2001): 760–69. http://dx.doi.org/10.1109/81.928159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Gang Feng i Jian Ma. "Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48, nr 11 (2001): 1337–44. http://dx.doi.org/10.1109/81.964424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Yamamoto, Shigeru, i Hidenori Kimura. "Quadratic Stabilization by H ∞ Controller with Time-Varying Tuner". IFAC Proceedings Volumes 29, nr 1 (czerwiec 1996): 1632–37. http://dx.doi.org/10.1016/s1474-6670(17)57902-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Eren, Yavuz, Jinglai Shen i Kanat Camlibel. "Quadratic stability and stabilization of bimodal piecewise linear systems". Automatica 50, nr 5 (maj 2014): 1444–50. http://dx.doi.org/10.1016/j.automatica.2014.03.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Yuepeng, Chen, Zhou Zude, Liu Huanbin i Zhane Qingling. "Simultaneous quadratic performance stabilization for linear time-delay systems". Journal of Systems Engineering and Electronics 17, nr 4 (grudzień 2006): 817–23. http://dx.doi.org/10.1016/s1004-4132(07)60022-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii