Artykuły w czasopismach na temat „PURE REFRIGERANTS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „PURE REFRIGERANTS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Hsieh, Shou-Shing, i Chun-Jen Weng. "Nucleate Pool Boiling Heat Transfer Coefficients of Distilled Water (H2O) and R-134a/Oil Mixtures From Rib-Roughened Surfaces". Journal of Heat Transfer 119, nr 1 (1.02.1997): 142–51. http://dx.doi.org/10.1115/1.2824079.
Pełny tekst źródłaLi, Hong. "Study on Alternative Refrigerants for Direct Expansion Solar Assisted Heat Pump System". Applied Mechanics and Materials 361-363 (sierpień 2013): 267–70. http://dx.doi.org/10.4028/www.scientific.net/amm.361-363.267.
Pełny tekst źródłaChamra, L. M., i P. J. Mago. "Modelling of evaporation heat transfer of pure refrigerants and refrigerant mixtures in microfin tubes". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, nr 4 (1.04.2007): 443–47. http://dx.doi.org/10.1243/0954406jmes131.
Pełny tekst źródłaWang, Qiang, Zhengyong Huang, Shucheng Ou i Ruiqiang Zhang. "The Energy Storage Properties of Refrigerants (R170, R134a, R143a, and R152a) in Mof-5 Nanoparticles: A Molecular Simulation Approach". Materials 12, nr 21 (31.10.2019): 3577. http://dx.doi.org/10.3390/ma12213577.
Pełny tekst źródłaYan, Fei, Qiang Wang, Shucheng Ou, Ruiqiang Zhang i Guoqiang Wang. "Molecular simulation study for adsorption and thermal energy storage analysis of refrigerants (R170, R161, R152a, and R143a) mixed with UIO-67 nanoparticles". Modern Physics Letters B 34, nr 30 (3.08.2020): 2050334. http://dx.doi.org/10.1142/s0217984920503340.
Pełny tekst źródłaSaleh, Bahaa, Ayman A. Aly, Mishal Alsehli, Ashraf Elfasakhany i Mohamed M. Bassuoni. "Performance Analysis and Working Fluid Selection for Single and Two Stages Vapor Compression Refrigeration Cycles". Processes 8, nr 9 (20.08.2020): 1017. http://dx.doi.org/10.3390/pr8091017.
Pełny tekst źródłaSoujoudi, Ray, i Randall Manteufel. "Thermodynamic performance of ammonia in liquefied natural gas precooling cycle". Thermal Science, nr 00 (2021): 72. http://dx.doi.org/10.2298/tsci201227072s.
Pełny tekst źródłaChamra, L. M., P. J. Mago, M.-O. Tan i C.-C. Kung. "Modelling of evaporation and condensation pressure drop in microfin tubes". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219, nr 1 (1.01.2005): 61–70. http://dx.doi.org/10.1243/095440605x8306.
Pełny tekst źródłaMorales-Espejel, Guillermo E., Hans H. Wallin, Rudolf Hauleitner i Magnus Arvidsson. "Progress in rolling bearing technology for refrigerant compressors". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 16 (21.08.2017): 2948–61. http://dx.doi.org/10.1177/0954406217725772.
Pełny tekst źródłaHasheer, Shaik Mohammad, i Kolla Srinivas. "Performance Comparison of a Low GWP Refrigerants as Alternatives to R134a in a Refrigerator with and without Liquid-Suction Heat Exchanger". Materials Science Forum 969 (sierpień 2019): 343–48. http://dx.doi.org/10.4028/www.scientific.net/msf.969.343.
Pełny tekst źródłaGessner, Tobias R., i Jader R. Barbosa. "Modeling absorption of pure refrigerants and refrigerant mixtures in lubricant oil". International Journal of Refrigeration 29, nr 5 (sierpień 2006): 773–80. http://dx.doi.org/10.1016/j.ijrefrig.2005.12.001.
Pełny tekst źródłaGupta, Abhishek S., Kartik S. Bhosale, Mohd Aman Ahmed, Zuheb Rawoot i Prof Dhanashree Ware. "Design and Development of R32a and HFO-1234yf Refrigeration blend in Air conditioning System". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 3162–66. http://dx.doi.org/10.22214/ijraset.2023.50537.
Pełny tekst źródłaKim, M. S., W. J. Mulroy i D. A. Didion. "Performance Evaluation of Two Azeotropic Refrigerant Mixtures of HFC-134a With R-290 (Propane) and R-600a (Isobutane)". Journal of Energy Resources Technology 116, nr 2 (1.06.1994): 148–54. http://dx.doi.org/10.1115/1.2906020.
Pełny tekst źródłaWongwises, Somchai, i Worachet Pirompak. "Flow characteristics of pure refrigerants and refrigerant mixtures in adiabatic capillary tubes". Applied Thermal Engineering 21, nr 8 (czerwiec 2001): 845–61. http://dx.doi.org/10.1016/s1359-4311(00)00090-9.
Pełny tekst źródłaLu, Xingbin, Jinping Liu i Xiongwen Xu. "Contact angle measurements of pure refrigerants". International Journal of Heat and Mass Transfer 102 (listopad 2016): 877–83. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.06.099.
Pełny tekst źródłaHamad, Ahmed J. "Experimental Investigation of Vapor Compression Refrigeration System Performance Using Nano-Refrigerant". Wasit Journal of Engineering Sciences 2, nr 2 (2.10.2014): 12–27. http://dx.doi.org/10.31185/ejuow.vol2.iss2.26.
Pełny tekst źródłaSulaimon, Shodiya, Azhar Abdul Aziz, Nasution Henry i Amer Nordin Darus. "Investigation of Various Mixtures of HC290/HC600 Refrigerants in Adiabatic Capillary Tube Used in Split-Type Air-Conditioner". Applied Mechanics and Materials 388 (sierpień 2013): 71–75. http://dx.doi.org/10.4028/www.scientific.net/amm.388.71.
Pełny tekst źródłaSaleh, B., i M. Wendland. "Screening of pure fluids as alternative refrigerants". International Journal of Refrigeration 29, nr 2 (marzec 2006): 260–69. http://dx.doi.org/10.1016/j.ijrefrig.2005.05.009.
Pełny tekst źródłaZheng, Dayu, Shengnan Feng, Liping Gao i Menglu Li. "Molecular dynamics simulation of non-azeotropic refrigerants separation in auto-cascading refrigeration". E3S Web of Conferences 118 (2019): 01006. http://dx.doi.org/10.1051/e3sconf/201911801006.
Pełny tekst źródłaBelghazi, M., A. Bontemps i C. Marvillet. "Condensation Heat Transfer on Enhanced Surface Tubes: Experimental Results and Predictive Theory". Journal of Heat Transfer 124, nr 4 (16.07.2002): 754–61. http://dx.doi.org/10.1115/1.1459728.
Pełny tekst źródłaPASEK, ARI D., i ARYADI SUWONO. "APPLICATION OF HYDROCARBON BASED REFRIGERANTS FOR AIR CONDITIONING IN INDONESIA". International Journal of Air-Conditioning and Refrigeration 19, nr 04 (grudzień 2011): 303–9. http://dx.doi.org/10.1142/s201013251100065x.
Pełny tekst źródłaVidhyarthi, Neeraj Kumar, Sandipan Deb, Sameer Sheshrao Gajghate, Sagnik Pal, Dipak Chandra Das, Ajoy Kumar Das i Bidyut Baran Saha. "A Comprehensive Assessment of Two-Phase Flow Boiling Heat Transfer in Micro-Fin Tubes Using Pure and Blended Eco-Friendly Refrigerants". Energies 16, nr 4 (16.02.2023): 1951. http://dx.doi.org/10.3390/en16041951.
Pełny tekst źródłaFeroskhan, M., T. Venugopal, Naif Mana Almakayeel, T. M. Yunus Khan, Saleh Alghamdi, Ali Saeed Almuflih i N. Gobinath. "Fundamentals, Thermophysical Properties, and Heat Transfer Characteristics of Nanorefrigerants: A Review". Journal of Nanomaterials 2022 (6.06.2022): 1–18. http://dx.doi.org/10.1155/2022/8618152.
Pełny tekst źródłaVali, Shaik Sharmas, Talanki Puttaranga Setty i Ashok Babu. "Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270". MATEC Web of Conferences 144 (2018): 04009. http://dx.doi.org/10.1051/matecconf/201814404009.
Pełny tekst źródłaAl-Zahrani, Ahmed. "Energy and Exergy Analysis on Zeotropic Refrigerants R-455A and R-463A as Alternatives for R-744 in Automotive Air-Conditioning System (AACs)". Processes 11, nr 7 (17.07.2023): 2127. http://dx.doi.org/10.3390/pr11072127.
Pełny tekst źródłaJung, Dongsoo, Kil-hong Song, Youngmok Cho i Sin-jong Kim. "Flow condensation heat transfer coefficients of pure refrigerants". International Journal of Refrigeration 26, nr 1 (styczeń 2003): 4–11. http://dx.doi.org/10.1016/s0140-7007(02)00082-8.
Pełny tekst źródłaRoss, H., R. Radermacher, M. di Marzo i D. Didion. "Horizontal flow boiling of pure and mixed refrigerants". International Journal of Heat and Mass Transfer 30, nr 5 (maj 1987): 979–92. http://dx.doi.org/10.1016/0017-9310(87)90016-0.
Pełny tekst źródłaJing, Biyu, Di Xia i Guoqiang Wang. "Adsorption and Self-Diffusion of R32/R1234yf in MOF-200 Nanoparticles by Molecular Dynamics Simulation". Processes 10, nr 9 (28.08.2022): 1714. http://dx.doi.org/10.3390/pr10091714.
Pełny tekst źródłaFeroiu, Viorel, i Dan Geanã. "Volumetric and thermodynamic properties for pure refrigerants and refrigerant mixtures from cubic equations of state". Fluid Phase Equilibria 207, nr 1-2 (maj 2003): 283–300. http://dx.doi.org/10.1016/s0378-3812(03)00034-7.
Pełny tekst źródłaArcasi, A., R. Mastrullo, A. W. Mauro i L. Viscito. "Adiabatic frictional pressure gradient during flow boiling of pure refrigerant R1233zd and non-azeotropic mixtures R448A, R452A and R455A". Journal of Physics: Conference Series 2177, nr 1 (1.04.2022): 012045. http://dx.doi.org/10.1088/1742-6596/2177/1/012045.
Pełny tekst źródłaJung, Dongsoo, Youngil Kim, Younghwan Ko i Kilhong Song. "Nucleate boiling heat transfer coefficients of pure halogenated refrigerants". International Journal of Refrigeration 26, nr 2 (marzec 2003): 240–48. http://dx.doi.org/10.1016/s0140-7007(02)00040-3.
Pełny tekst źródłaPorto, Matheus P., Hugo T. C. Pedro, Luiz Machado, Ricardo N. N. Koury, Enio P. Bandarra Filho i Carlos F. M. Coimbra. "Optimized heat transfer correlations for pure and blended refrigerants". International Journal of Heat and Mass Transfer 85 (czerwiec 2015): 577–84. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.102.
Pełny tekst źródłaMehendale, Sunil S. "Condensing heat transfer of pure refrigerants and refrigerant mixtures flowing within horizontal microfin tubes: A new model". International Journal of Refrigeration 103 (lipiec 2019): 223–42. http://dx.doi.org/10.1016/j.ijrefrig.2019.04.015.
Pełny tekst źródłaSami, S. M., i J. Schnotale. "Comparative study of two phase flow boiling of refrigerant mixtures and pure refrigerants inside enhanced surface tubing". International Communications in Heat and Mass Transfer 19, nr 1 (styczeń 1992): 137–48. http://dx.doi.org/10.1016/0735-1933(92)90071-o.
Pełny tekst źródłaNasrifar, Khashayar, i Mahmood Moshfeghian. "Evaluation of saturated liquid density prediction methods for pure refrigerants". Fluid Phase Equilibria 158-160 (czerwiec 1999): 437–45. http://dx.doi.org/10.1016/s0378-3812(99)00068-0.
Pełny tekst źródłaMulero, A., M. I. Parra, K. K. Park i F. L. Román. "Vaporization Enthalpy of Pure Refrigerants: Comparative Study of Eighteen Correlations". Industrial & Engineering Chemistry Research 49, nr 10 (19.05.2010): 5018–26. http://dx.doi.org/10.1021/ie901015f.
Pełny tekst źródłaShin, Jee Young, Min Soo Kim i Sung Tack Ro. "Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube". International Journal of Refrigeration 20, nr 4 (czerwiec 1997): 267–75. http://dx.doi.org/10.1016/s0140-7007(97)00004-2.
Pełny tekst źródłaSakina, Fara Nabilah, Habibatu Nihayah, Teguh Hady Ariwibowo i Lohdy Diana. "THERMODYNAMIC ANALYSIS OF RECUPERATIVE AND REHEAT BASED ON ORGANIC RANKINE CYCLE FOR HIGH-TEMPERATURE WASTE HEAT RECOVERY". Jurnal Rekayasa Mesin 14, nr 1 (29.05.2023): 331–42. http://dx.doi.org/10.21776/jrm.v14i1.1310.
Pełny tekst źródłaPARK, KYOUNG KUHN. "A SATURATED LIQUID DENSITY CORRELATION FOR PURE REFRIGERANTS AND OTHER SUBSTANCES". International Journal of Air-Conditioning and Refrigeration 20, nr 02 (czerwiec 2012): 1250004. http://dx.doi.org/10.1142/s2010132512500046.
Pełny tekst źródłaZhi, Liang-Hui, Peng Hu, Long-Xiang Chen i Gang Zhao. "Viscosity prediction for six pure refrigerants using different artificial neural networks". International Journal of Refrigeration 88 (kwiecień 2018): 432–40. http://dx.doi.org/10.1016/j.ijrefrig.2018.02.011.
Pełny tekst źródłaTarrad, Ali Hussain, i Ayad Khudhair Al-Nadawi. "Modeling of Finned-Tube Evaporator using Pure and Zeotropic Blend Refrigerants". Athens Journal of Τechnology & Engineering 2, nr 4 (30.11.2015): 263–82. http://dx.doi.org/10.30958/ajte.2-4-4.
Pełny tekst źródłaSun, Zhaofu, Maoqiong Gong, Yanfeng Qi, Zhijian Li i Jianfeng Wu. "Nucleate pool boiling heat transfer of pure refrigerants and binary mixtures". Journal of Thermal Science 13, nr 3 (sierpień 2004): 259–63. http://dx.doi.org/10.1007/s11630-004-0040-5.
Pełny tekst źródłaMimoune, Zoubeyr, Imad Anoune i Hakim Madani. "Implementation of PC-SAFT for Predicting thermodynamic properties of pure refrigerants and vapor-liquid equilibria of refrigerants binary mixtures." Fluid Phase Equilibria 573 (październik 2023): 113868. http://dx.doi.org/10.1016/j.fluid.2023.113868.
Pełny tekst źródłaTyczewski, Przemysław. "Tribological Wear in the Complex Service Conditions". Solid State Phenomena 225 (grudzień 2014): 101–8. http://dx.doi.org/10.4028/www.scientific.net/ssp.225.101.
Pełny tekst źródłaHong, Eul Cheong, Jee Young Shin, Min Soo Kim, Kyungdoug Min i Sung Tack Ro. "Prediction of forced convective boiling heat transfer coefficient of pure refrigerants and binary refrigerant mixtures inside a horizontal tube". KSME International Journal 17, nr 6 (czerwiec 2003): 935–44. http://dx.doi.org/10.1007/bf02983408.
Pełny tekst źródłaLee, Kyu Sun, Hong Gyu Jeon, Sung Oug Cho i Young Ze Lee. "Friction and Wear of Flange and Shaft in Compressor under the Environments of PAG Oil and Carbon Dioxide as a Refrigerant". Key Engineering Materials 345-346 (sierpień 2007): 1059–62. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1059.
Pełny tekst źródłaLi, Shengyu, i Jun Lu. "A Theoretical Comparative Study of Vapor-Compression Refrigeration Cycle using Al2O3 Nanoparticle with Low-GWP Refrigerants". Entropy 24, nr 12 (13.12.2022): 1820. http://dx.doi.org/10.3390/e24121820.
Pełny tekst źródłaGupte, Neelkanth S., i Ralph L. Webb. "Convective Vaporization of Pure Refrigerants in Enhanced and Integral-Fin Tube Banks". Journal of Enhanced Heat Transfer 1, nr 4 (1994): 351–64. http://dx.doi.org/10.1615/jenhheattransf.v1.i4.60.
Pełny tekst źródłaSami, S. M., i C. Tribes. "Numerical prediction of capillary tube behaviour with pure and binary alternative refrigerants". Applied Thermal Engineering 18, nr 6 (marzec 1998): 491–502. http://dx.doi.org/10.1016/s1359-4311(97)00048-3.
Pełny tekst źródłaDewangan, Ashok K., Anil Kumar i Ravi Kumar. "Nucleate boiling of pure and quasi-azeotropic refrigerants from copper coated surfaces". Applied Thermal Engineering 94 (luty 2016): 395–403. http://dx.doi.org/10.1016/j.applthermaleng.2015.10.138.
Pełny tekst źródła