Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Pulse Tube Refrigerator.

Artykuły w czasopismach na temat „Pulse Tube Refrigerator”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Pulse Tube Refrigerator”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Zhao, Hongxiang, Wei Shao, Zheng Cui i Chen Zheng. "Multi-Objective Parameter Optimization of Pulse Tube Refrigerator Based on Kriging Metamodel and Non-Dominated Ranking Genetic Algorithms". Energies 16, nr 6 (15.03.2023): 2736. http://dx.doi.org/10.3390/en16062736.

Pełny tekst źródła
Streszczenie:
Structure parameters have an important influence on the refrigeration performance of pulse tube refrigerators. In this paper, a method combining the Kriging metamodel and Non-Dominated Sorting Genetic Algorithm II (NSGA II) is proposed to optimize the structure of regenerators and pulse tubes to obtain better cooling capacity. Firstly, the Kriging metamodel of the original pulse tube refrigerator CFD model is established to improve the iterative solution efficiency. On this basis, NSGA II was applied to the optimization iteration process to obtain the optimal and worst Pareto front solutions for cooling performance, the heat and mass transfer characteristics of which were further analyzed comparatively to reveal the influence mechanism of the structural parameters. The results show that the Kriging metamodel presents a prediction error of about 2.5%. A 31.24% drop in the minimum cooling temperature and a 31.7% increase in cooling capacity at 120 K are achieved after optimization, and the pressure drop loss at the regenerator and the vortex in the pulse tube caused by the structure parameter changes are the main factors influencing the whole cooling performance of the pulse tube refrigerators. The current study provides a scientific and efficient design method for miniature cryogenic refrigerators.
Style APA, Harvard, Vancouver, ISO itp.
2

Geng, Zongtao, Wei Shao, Zheng Cui i Chen Zheng. "Study on Phase-Shift Mechanism and Kriging-Based Global Optimization of the Active Displacer Pulse Tube Refrigerators". Energies 16, nr 11 (23.05.2023): 4263. http://dx.doi.org/10.3390/en16114263.

Pełny tekst źródła
Streszczenie:
Pulse tube refrigerators are widely used in certain special fields, such as aerospace, due to their unique advantages. Compared to a conventional phase shifter, the active displacer helps to achieve a higher cooling efficiency for pulse tube refrigerators. At present, the displacer is mainly studied by one-dimensional simulation, and the optimization method is not perfect due to its poor accuracy, which is not conducive to obtaining a better performance. Based on the current status of displacer research, phase-shift mechanisms of inertance tube pulse tube refrigerators and active displacer pulse tube refrigerators were firstly studied comparatively by multidimensional simulation, and then we determined the crucial effect properties that lead to a better cooling performance for the active displacer pulse tube refrigerator at different cooling temperatures. Finally, an efficient optimization method combining the Kriging model and genetic algorithm is proposed to further improve the cooling performance of the active displacer pulse tube refrigerator. The results show that the active displacer substantially improves the cooling performance compared to the inertance tube mainly by increasing the PV power and enthalpy flow in the pulse tube. The Kriging agent models of active displacer pulse tube refrigerator achieve 98.2%, 98.31%, 97.86%, and 97.32% prediction accuracy for no-load temperature, cooling capacity, coefficient of performance, and total input PV power, respectively. After optimization, the no-load temperature is minimally optimized for a 23.68% reduction compared to the initial one with a relatively high efficiency, and the founded optimization methods can also be weighted for multiple objectives, according to actual needs.
Style APA, Harvard, Vancouver, ISO itp.
3

Uhlig, Kurt. "dilution refrigerator with pulse-tube refrigerator precooling". Cryogenics 42, nr 2 (luty 2002): 73–77. http://dx.doi.org/10.1016/s0011-2275(02)00002-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Fang, Chushu, Yanbo Duan, Zekun Wang, Hongyu Dong, Laifeng Li i Yuan Zhou. "Numerical simulation of three-stage gas coupled pulse tube refrigerator". IOP Conference Series: Materials Science and Engineering 1240, nr 1 (1.05.2022): 012135. http://dx.doi.org/10.1088/1757-899x/1240/1/012135.

Pełny tekst źródła
Streszczenie:
Abstract For its compact structure, small mass, no moving parts at low temperature, strong reliability and stability, Stirling pulse tube refrigerator is regarded as a major development direction of small refrigerator at low temperatures. In order to obtain lower no-load cooling temperature and higher cooling efficiency, multi-stage structure is often used in pulse tube refrigerator. In this paper, a model of three-stage gas-coupled pulse tube refrigerator with multi-bypass and double-inlet is designed by SAGE software. The effects of double-inlet and multi-bypass on the gas distribution of multi-stage pulse tube refrigerator are analyzed. The results show that the multi-bypass and double-inlet do not independently affect the minimum temperature of the refrigerator at no-load, and there is a coupling relationship between their opening. The numerical simulation results are of great value for the construction of a three-stage gas coupled pulse tube refrigerator prototype.
Style APA, Harvard, Vancouver, ISO itp.
5

Shafi, K. A., K. K. A. Rasheed, J. M. George, N. K. M. Sajid i S. Kasthurirengan. "An adiabatic model for a two-stage double-inlet pulse tube refrigerator". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, nr 7 (1.07.2008): 1247–52. http://dx.doi.org/10.1243/09544062jmes775.

Pełny tekst źródła
Streszczenie:
A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Style APA, Harvard, Vancouver, ISO itp.
6

Richardson, R. N. "Valved pulse tube refrigerator development". Cryogenics 29, nr 8 (sierpień 1989): 850–53. http://dx.doi.org/10.1016/0011-2275(89)90160-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zhu, Shaowei. "Step piston pulse tube refrigerator". Cryogenics 64 (listopad 2014): 63–69. http://dx.doi.org/10.1016/j.cryogenics.2014.09.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Meng, Yuan, Zheng Cui, Wei Shao i Wanxiang Ji. "Numerical Simulation of the Heat Transfer and Flow Characteristics of Pulse Tube Refrigerators". Energies 16, nr 4 (14.02.2023): 1906. http://dx.doi.org/10.3390/en16041906.

Pełny tekst źródła
Streszczenie:
Because of the unequal diameter between the pulse tube and the heat exchangers at the two sides, the fluid entering the pulse tube from the heat exchanger easily forms a complex disturbing flow in the pulse tube, which causes energy loss and affects the performance of a pulse tube refrigerator. This study proposes a numerical model for predicting the flow and heat transfer characteristics of pulse tube refrigerators. Three cases of adding conical tube transitions between the pulse tube and the heat exchanger are studied, and the results indicate that the conical tube transition can reduce the fluid flow velocity at the inlet and outlet of the pulse tube and reduce the size of the vortex at the boundary of the pulse tube. In comparison with the tapered transition of 45° on only one side of the pulse tube, both sides can maintain the temperature gradient, effectively decrease the effect of the disturbing flow, and significantly improve the cooling performance of the pulse tube.
Style APA, Harvard, Vancouver, ISO itp.
9

Yuyama, J., i M. Kasuya. "Experimental study on refrigeration losses in pulse tube refrigerator". Cryogenics 33, nr 10 (październik 1993): 947–50. http://dx.doi.org/10.1016/0011-2275(93)90222-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Snodgrass, Ryan, Joel Ullom i Scott Backhaus. "Optimal absorption of distributed and conductive heat loads with cryocooler regenerators". IOP Conference Series: Materials Science and Engineering 1240, nr 1 (1.05.2022): 012131. http://dx.doi.org/10.1088/1757-899x/1240/1/012131.

Pełny tekst źródła
Streszczenie:
Abstract The second-stage regenerators of pulse tube refrigerators are routinely used to intercept heat in cryogenic systems; however, optimal methods for heat sinking to the regenerator have not been studied in detail. We investigated intermediate cooling methods by densely instrumenting a commercial, two-stage pulse tube refrigerator with thermometers and heaters. We then experimentally emulated heat loads from common sources such as arrays of electrical cables (a single-point conductive load) and 3He return gas for dilution refrigerators (a distributed load). Optimal methods to absorb these heat loads, whether applied independently or simultaneously, are presented. Our study reveals the importance of understanding the response of the regenerator temperature profle for optimal thermal integration of heat loads along the regenerator, i.e., temperatures and heat fows at all heat sink locations. With optimal utilization of regenerator intermediate cooling, 3He fow rates of up to 2 mmol/s can be cooled from 50 K to 3 K and fully condensed using this pulse tube refrigerator; alternatively, the heat leak from over 100 electrical cables can be cooled across that same temperature span while simultaneously condensing 1.4 mmol/s of 3He.
Style APA, Harvard, Vancouver, ISO itp.
11

Zhu, Shaowei, i Yoichi Matsubara. "Numerical method of inertance tube pulse tube refrigerator". Cryogenics 44, nr 9 (wrzesień 2004): 649–60. http://dx.doi.org/10.1016/j.cryogenics.2004.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Richardson, R. N. "Pulse tube refrigerator — an alternative cryocooler?" Cryogenics 26, nr 6 (czerwiec 1986): 331–40. http://dx.doi.org/10.1016/0011-2275(86)90062-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kittel, P. "Ideal orifice pulse tube refrigerator performance". Cryogenics 32, nr 9 (styczeń 1992): 843–44. http://dx.doi.org/10.1016/0011-2275(92)90320-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Zhu, S. W., i Z. Q. Chen. "Isothermal model of pulse tube refrigerator". Cryogenics 34, nr 7 (styczeń 1994): 591–95. http://dx.doi.org/10.1016/0011-2275(94)90185-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhu, Shaowei, i Zhongqi Chen. "Enthalpy flow rate of a pulse tube in pulse tube refrigerator". Cryogenics 38, nr 12 (grudzień 1998): 1213–16. http://dx.doi.org/10.1016/s0011-2275(98)00107-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Jung, Jeheon, i Sangkwon Jeong. "Optimal pulse tube volume design in GM-type pulse tube refrigerator". Cryogenics 47, nr 9-10 (wrzesień 2007): 510–16. http://dx.doi.org/10.1016/j.cryogenics.2007.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

SUGANO, Masato, Yoshiki KANAZAWA i Masakazu NOZAWA. "Relation of Regenerator and Refrigeration Performance for Pulse Tube Refrigerator." Proceedings of Autumn Conference of Tohoku Branch 2016.52 (2016): 204. http://dx.doi.org/10.1299/jsmetohoku.2016.52.204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Choudhari, Mahmadrafik S., B. S. Gawali i Prateek Malwe. "Numerical Analysis of Inertance Pulse Tube Refrigerator". IOP Conference Series: Materials Science and Engineering 1104, nr 1 (1.03.2021): 012008. http://dx.doi.org/10.1088/1757-899x/1104/1/012008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

KATO, Yoshitaka. "Model pulse tube refrigerator using plastic bellows". Proceedings of the Symposium on Stirlling Cycle 2021.23 (2021): B1. http://dx.doi.org/10.1299/jsmessc.2021.23.b1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

TANG, Ke. "92 K thermoacoustically driven pulse tube refrigerator". Chinese Science Bulletin 49, nr 14 (2004): 1541. http://dx.doi.org/10.1360/04we0048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Biwa, T. "Thermoacoustic analysis of a pulse tube refrigerator". Journal of Physics: Conference Series 400, nr 5 (17.12.2012): 052001. http://dx.doi.org/10.1088/1742-6596/400/5/052001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Zhu, Shaowei, Yasuhiro Kakimi i Yoichi Matsubara. "Investigation of active-buffer pulse tube refrigerator". Cryogenics 37, nr 8 (sierpień 1997): 461–71. http://dx.doi.org/10.1016/s0011-2275(97)00080-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Xu, M. Y., A. T. A. M. De Waele i Y. L. Ju. "A pulse tube refrigerator below 2 K". Cryogenics 39, nr 10 (październik 1999): 865–69. http://dx.doi.org/10.1016/s0011-2275(99)00101-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

HAMAJIMA, Takanori, Yoshinori FUNATSU i Nobuo OKUMURA. "Development of ST Type Pulse Tube Refrigerator". Proceedings of the Symposium on Stirlling Cycle 2000.4 (2000): 141–42. http://dx.doi.org/10.1299/jsmessc.2000.4.141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

DAI, Wei, Yoichi MATSUBARA, Hisayasu KOBAYASHI i Shuliang ZHOU. "D03 V-M Cycle Pulse Tube Refrigerator". Proceedings of the Symposium on Stirlling Cycle 2001.5 (2001): 121–22. http://dx.doi.org/10.1299/jsmessc.2001.5.121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

David, M., J. C. Maréchal, Y. Simon i C. Guilpin. "Theory of ideal orifice pulse tube refrigerator". Cryogenics 33, nr 2 (styczeń 1993): 154–61. http://dx.doi.org/10.1016/0011-2275(93)90129-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Uhlig, Kurt. "“Dry” dilution refrigerator with pulse-tube precooling". Cryogenics 44, nr 1 (styczeń 2004): 53–57. http://dx.doi.org/10.1016/j.cryogenics.2003.07.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Tanaeva, I. A., i A. T. A. M. de Waele. "A small helium-3 pulse-tube refrigerator". Cryogenics 45, nr 8 (sierpień 2005): 578–84. http://dx.doi.org/10.1016/j.cryogenics.2005.06.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Riabzev, S. V., A. M. Veprik, H. S. Vilenchik i N. Pundak. "Vibration generation in a pulse tube refrigerator". Cryogenics 49, nr 1 (styczeń 2009): 1–6. http://dx.doi.org/10.1016/j.cryogenics.2008.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Ki, Taekyung, Sangkwon Jeong, Junseok Ko i Jiho Park. "Tandem-type pulse tube refrigerator without reservoir". Cryogenics 72 (grudzień 2015): 44–52. http://dx.doi.org/10.1016/j.cryogenics.2015.08.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Yuan, S. W. K. "Validation of the Pulse Tube Refrigerator Model against a Lockheed pulse tube cooler". Cryogenics 36, nr 10 (październik 1996): 871–77. http://dx.doi.org/10.1016/0011-2275(96)00051-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

NOHTOMI, Makoto, i Masafumi KATSUTA. "D02 Study on the practical refrigeration system with a pulse tube refrigerator". Proceedings of the Symposium on Stirlling Cycle 2001.5 (2001): 119–20. http://dx.doi.org/10.1299/jsmessc.2001.5.119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

GAO, Jin Lin, i Yoichi MATSUBARA. "An Experimental Investigation of 4K Pulse Tube Refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, nr 9 (1993): 504–10. http://dx.doi.org/10.2221/jcsj.28.504.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Sai Baba, M., i Pankaj Kumar. "Analysis of Inertance Pulse Tube Refrigerator using CFD". IOP Conference Series: Materials Science and Engineering 954 (23.10.2020): 012049. http://dx.doi.org/10.1088/1757-899x/954/1/012049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ko, Jun-Seok, Hyo-Bong Kim, Seong-Je Park, Yong-Ju Hong, Han-Kil Yeom, Chung-Soo Lee, In-Su Kang i Deuk-Yong Koh. "Orientation dependence of GM-type pulse tube refrigerator". Superconductivity and Cryogenics 14, nr 3 (30.09.2012): 48–52. http://dx.doi.org/10.9714/sac.2012.14.3.048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Huang, B. J., i B. W. Sun. "A pulse-tube refrigerator using variable-resistance orifice". Cryogenics 43, nr 1 (styczeń 2003): 59–65. http://dx.doi.org/10.1016/s0011-2275(03)00027-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Shi, Y., i S. Zhu. "Experimental investigation of pulse tube refrigerator with displacer". International Journal of Refrigeration 76 (kwiecień 2017): 1–6. http://dx.doi.org/10.1016/j.ijrefrig.2017.01.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

M.V, Preethi, Arunkumar K N, Kasthuriregan S i Vasudevan K. "NUMERICAL ANALYSIS OF SINGLE STAGE PULSE TUBE REFRIGERATOR". International Journal of Engineering and Technology 9, nr 5 (31.10.2017): 3798–805. http://dx.doi.org/10.21817/ijet/2017/v9i5/170905138.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zhu, Shaowei. "Displacer Diameter Effect in Displacer Pulse Tube Refrigerator". IOP Conference Series: Materials Science and Engineering 278 (grudzień 2017): 012143. http://dx.doi.org/10.1088/1757-899x/278/1/012143.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Wang, Chao, Peiyi Wu i Zhongqi Chen. "Numerical modelling of an orifice pulse tube refrigerator". Cryogenics 32, nr 9 (styczeń 1992): 785–90. http://dx.doi.org/10.1016/0011-2275(92)90310-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wang, C., P. Y. Wu i Z. Q. Chen. "Numerical analysis of double-inlet pulse tube refrigerator". Cryogenics 33, nr 5 (maj 1993): 526–30. http://dx.doi.org/10.1016/0011-2275(93)90249-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Gao, J. L., i Y. Matsubara. "Experimental investigation of 4 K pulse tube refrigerator". Cryogenics 34, nr 1 (styczeń 1994): 25–30. http://dx.doi.org/10.1016/0011-2275(94)90048-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, C., P. Wu i Z. Chen. "Modified orifice pulse tube refrigerator without a reservoir". Cryogenics 34, nr 1 (styczeń 1994): 31–36. http://dx.doi.org/10.1016/0011-2275(94)90049-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

de Boer, P. C. T. "Thermodynamic analysis of the basic pulse-tube refrigerator". Cryogenics 34, nr 9 (styczeń 1994): 699–711. http://dx.doi.org/10.1016/0011-2275(94)90154-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

de Boer, P. C. T. "Analysis of basic pulse-tube refrigerator with regenerator". Cryogenics 35, nr 9 (wrzesień 1995): 547–53. http://dx.doi.org/10.1016/0011-2275(95)91252-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wang, C., S. Q. Wang, J. H. Cai i Z. Yuan. "Experimental study of multi-bypass pulse-tube refrigerator". Cryogenics 35, nr 9 (wrzesień 1995): 555–58. http://dx.doi.org/10.1016/0011-2275(95)91253-h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Jung, Jeheon, i Sangkwon Jeong. "Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect". Cryogenics 45, nr 5 (maj 2005): 386–96. http://dx.doi.org/10.1016/j.cryogenics.2005.01.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ki, Taekyung, i Sangkwon Jeong. "Study for coating effect of various materials in pulse tube of pulse tube refrigerator". Cryogenics 52, nr 10 (październik 2012): 518–22. http://dx.doi.org/10.1016/j.cryogenics.2012.06.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Panda, Debashis, Ashok K. Satapathy i Sunil K. Sarangi. "Thermoeconomic performance optimization of an orifice pulse tube refrigerator". Science and Technology for the Built Environment 26, nr 4 (2.02.2020): 492–510. http://dx.doi.org/10.1080/23744731.2020.1717245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ki, Tae-Kyung, i Sang-Kwon Jeong. "Design of compact phase controller for pulse tube refrigerator". Progress in Superconductivity and Cryogenics 13, nr 2 (31.05.2011): 25–28. http://dx.doi.org/10.9714/psac.2011.13.2.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii