Artykuły w czasopismach na temat „Pseudopotential model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Pseudopotential model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Liu, Fu-Min, An-Lin Wang, Ruo-Fan Qiu i Tao Jiang. "Improved lattice Boltzmann model for multi-component diffusion flow with large pressure difference". International Journal of Modern Physics C 27, nr 11 (29.08.2016): 1650130. http://dx.doi.org/10.1142/s0129183116501308.
Pełny tekst źródłaEvseevichev, N. I. "Pseudopotential model of glassy semiconductors". Journal of Non-Crystalline Solids 90, nr 1-3 (luty 1987): 57–60. http://dx.doi.org/10.1016/s0022-3093(87)80383-6.
Pełny tekst źródłaM. Vora, Aditya. "STUDY OF SUPERCONDUCTING EFFECTS IN TRANSITION METALS BASED BINARY ALLOYS USING PSEUDOPOTENTIAL THEORY". Latvian Journal of Physics and Technical Sciences 48, nr 1 (1.01.2011): 42–54. http://dx.doi.org/10.2478/v10047-011-0004-y.
Pełny tekst źródłaWang, Dongmin, Gaoshuai Lin, Yugang Zhao i Ming Gao. "Effects of Numerical Schemes of Contact Angle on Simulating Condensation Heat Transfer in a Subcooled Microcavity by Pseudopotential Lattice Boltzmann Model". Energies 16, nr 6 (10.03.2023): 2622. http://dx.doi.org/10.3390/en16062622.
Pełny tekst źródłaKoptsev, A. P., A. V. Nyavro i V. N. Cherepanov. "A power-law model of the pseudopotential". Russian Physics Journal 54, nr 4 (wrzesień 2011): 430–34. http://dx.doi.org/10.1007/s11182-011-9635-y.
Pełny tekst źródłaTsirkin, S. S., S. V. Eremeev i E. V. Chulkov. "Model pseudopotential for the Cu(110) surface". Physics of the Solid State 52, nr 1 (styczeń 2010): 188–94. http://dx.doi.org/10.1134/s1063783410010324.
Pełny tekst źródłaGao, Shangwen, Chengbin Zhang, Yingjuan Zhang, Qiang Chen, Bo Li i Suchen Wu. "Revisiting a class of modified pseudopotential lattice Boltzmann models for single-component multiphase flows". Physics of Fluids 34, nr 5 (maj 2022): 057103. http://dx.doi.org/10.1063/5.0088246.
Pełny tekst źródłaGhillino, Enrico, Carlo Garetto, Michele Goano, Giovanni Ghione, Enrico Bellotti i Kevin F. Brennan. "Simplex Algorithm for Band Structure Calculation of Noncubic Symmetry Semiconductors: Application to III-nitride Binaries and Alloys". VLSI Design 13, nr 1-4 (1.01.2001): 63–68. http://dx.doi.org/10.1155/2001/74207.
Pełny tekst źródłaAl-Douri, Y. "Electronic and Positron Properties of Zinc-Blende MgTe, CdTe and their Alloy Mg1-XCdXTe". Advanced Materials Research 264-265 (czerwiec 2011): 580–85. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.580.
Pełny tekst źródłaRudavskii, Ponedilok i Klapchuk. "MODEL PSEUDOPOTENTIAL OF THE ELECTRON - NEGATIVE ION INTERACTION". Condensed Matter Physics 6, nr 4 (2003): 611. http://dx.doi.org/10.5488/cmp.6.4.611.
Pełny tekst źródłaGong, W., Y. Y. Yan, S. Chen i E. Wright. "A modified phase change pseudopotential lattice Boltzmann model". International Journal of Heat and Mass Transfer 125 (październik 2018): 323–29. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.090.
Pełny tekst źródłaJani, A. R., i H. K. Patel. "Quantum number dependent model pseudopotential for metallic proerties". physica status solidi (b) 133, nr 1 (1.01.1986): K21—K24. http://dx.doi.org/10.1002/pssb.2221330156.
Pełny tekst źródłaMelker, A. I., D. B. Mizandrontzev i V. V. Sirotinkin. "Calculation of Energy Characteristics of Point Defects in bcc Iron by Molecular Dynamic Technique". Zeitschrift für Naturforschung A 46, nr 3 (1.03.1991): 233–39. http://dx.doi.org/10.1515/zna-1991-0304.
Pełny tekst źródłaMUJIBUR RAHMAN, S. M. "PHASE STABILITY OF RANDOM BRASSES: PSEUDOPOTENTIAL THEORY REVISITED". International Journal of Modern Physics B 02, nr 03n04 (sierpień 1988): 301–54. http://dx.doi.org/10.1142/s0217979288000238.
Pełny tekst źródłaPatel, Smruti J., A. Y. Vahora, B. Y. Thakore i Ashvin R. Jani. "Comparison of Certain Local Pseudopotentials and a New Proposal". Advanced Materials Research 665 (luty 2013): 70–73. http://dx.doi.org/10.4028/www.scientific.net/amr.665.70.
Pełny tekst źródłaVieira, Armando, M. Begoña Torres, Carlos Fiolhais i L. Carlos Balbás. "Comparison of the spherically averaged pseudopotential model with the stabilized jellium model". Journal of Physics B: Atomic, Molecular and Optical Physics 30, nr 15 (14.08.1997): 3583–96. http://dx.doi.org/10.1088/0953-4075/30/15/025.
Pełny tekst źródłaShan, Minglei, Yu Yang, Hao Peng, Qingbang Han i Changping Zhu. "Modeling of collapsing cavitation bubble near solid wall by 3D pseudopotential multi-relaxation-time lattice Boltzmann method". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, nr 3 (8.11.2017): 445–56. http://dx.doi.org/10.1177/0954406217740167.
Pełny tekst źródłaNielsen-Gammon, John W., i David A. Gold. "Dynamical Diagnosis: A Comparison of Quasigeostrophy and Ertel Potential Vorticity". Meteorological Monographs 55 (1.11.2008): 183–202. http://dx.doi.org/10.1175/0065-9401-33.55.183.
Pełny tekst źródłaAndreocci, Marco V., Carla Cauletti, Stefano Stranges, Bernd Wrackmeyer i Carin Stader. "UV Photoelectron Spectra and Pseudopotential “ab initio” Calculations of Some 4-Membered Cyclic Amides of Group XIV Elements". Zeitschrift für Naturforschung B 46, nr 1 (1.01.1991): 39–46. http://dx.doi.org/10.1515/znb-1991-0109.
Pełny tekst źródłaFogliatto, Ezequiel Oscar, Alejandro Clausse i Federico Eduardo Teruel. "Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method". International Journal of Numerical Methods for Heat & Fluid Flow 29, nr 9 (2.09.2019): 3095–109. http://dx.doi.org/10.1108/hff-11-2018-0682.
Pełny tekst źródłaShokrian Zini, Modjtaba, Alain Delgado, Roberto dos Reis, Pablo Antonio Moreno Casares, Jonathan E. Mueller, Arne-Christian Voigt i Juan Miguel Arrazola. "Quantum simulation of battery materials using ionic pseudopotentials". Quantum 7 (10.07.2023): 1049. http://dx.doi.org/10.22331/q-2023-07-10-1049.
Pełny tekst źródłaFourman, V. V., i P. M. Yakibchuk. "Pseudopotential within the framework of phase functions method. The structure of model pseudopotential of transition and rare-earth metals". Journal of Physical Studies 1, nr 1 (1996): 134–47. http://dx.doi.org/10.30970/jps.01.134.
Pełny tekst źródłaKiejna, Adam. "Surface properties of simple metals in a structureless pseudopotential model". Physical Review B 47, nr 12 (15.03.1993): 7361–64. http://dx.doi.org/10.1103/physrevb.47.7361.
Pełny tekst źródłaTsirkin, S. S., S. V. Eremeev i E. V. Chulkov. "Model pseudopotential for the (110) surface of fcc noble metals". Surface Science 604, nr 9-10 (maj 2010): 804–10. http://dx.doi.org/10.1016/j.susc.2010.02.003.
Pełny tekst źródłaZhao, Yong, Gerald G. Pereira, Shibo Kuang i Baochang Shi. "On a modified pseudopotential lattice Boltzmann model for multicomponent flows". Applied Mathematics Letters 114 (kwiecień 2021): 106926. http://dx.doi.org/10.1016/j.aml.2020.106926.
Pełny tekst źródłaSrivastava, P. K., i O. P. Kulshrestha. "Lattice Dynamics of Lanthanum by Using a Model Pseudopotential Approach". physica status solidi (b) 130, nr 1 (1.07.1985): K23—K25. http://dx.doi.org/10.1002/pssb.2221300146.
Pełny tekst źródłaLi, Jing, i Xiaobin Liu. "Pseudopotential Lattice Boltzmann Model for Immiscible Multicomponent Flows in Microchannels". Processes 11, nr 7 (21.07.2023): 2193. http://dx.doi.org/10.3390/pr11072193.
Pełny tekst źródłaPACHECO, J. M., W. EKARDT i W. D. SCHÖNE. "REINTRODUCING THE IONIC STRUCTURE IN THE JELLIUM MODEL FOR METAL CLUSTERS: PSEUDOPOTENTIAL PERTURBATION THEORY". Surface Review and Letters 03, nr 01 (luty 1996): 313–16. http://dx.doi.org/10.1142/s0218625x96000577.
Pełny tekst źródłaRao, R. V. Gopala, i R. Venkatesh. "Application of the charged-hard-sphere model to liquid transition metals". Canadian Journal of Physics 68, nr 11 (1.11.1990): 1224–26. http://dx.doi.org/10.1139/p90-175.
Pełny tekst źródłaPrakruti, Chaudhari, Payal N. Chauhan, R. H. Joshi, Nisarg K. Bhatt i Brijmohan Y. Thakore. "Elastic Properties of Zr50Cu43Ag7 Bulk Metallic Glass Using Pseudopotential Theory". Advanced Materials Research 1141 (sierpień 2016): 232–35. http://dx.doi.org/10.4028/www.scientific.net/amr.1141.232.
Pełny tekst źródłaVORA, ADITYA M. "PRESSURE EFFECTS ON Mg70Zn30 SUPERCONDUCTOR". Modern Physics Letters B 23, nr 11 (10.05.2009): 1443–55. http://dx.doi.org/10.1142/s0217984909019612.
Pełny tekst źródłaAndriopoulos, N., i EI von Nagy-Felsobuki. "Pseudopotential Calculations for Li2, Na2 and NaLi". Australian Journal of Physics 41, nr 4 (1988): 563. http://dx.doi.org/10.1071/ph880563.
Pełny tekst źródłaOSMAN, S. M., i S. M. MUJIBUR RAHMAN. "STRUCTURAL AND THERMODYNAMIC PROPERTIES OF 3d TRANSITION METALS: PSEUDOPOTENTIAL THEORY REVISITED". Modern Physics Letters B 09, nr 09 (20.04.1995): 553–64. http://dx.doi.org/10.1142/s0217984995000504.
Pełny tekst źródłaVora, Aditya M. "Electrical Transport Properties of K-Based Alkali Liquid Binary Alloys". International Letters of Chemistry, Physics and Astronomy 54 (lipiec 2015): 56–72. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.54.56.
Pełny tekst źródłaVora, Aditya M. "Electrical Transport Properties of K-Based Alkali Liquid Binary Alloys". International Letters of Chemistry, Physics and Astronomy 54 (3.07.2015): 56–72. http://dx.doi.org/10.56431/p-kcmil1.
Pełny tekst źródłaFogliatto, Ezequiel O., Alejandro Clausse i Federico E. Teruel. "Development of a double-MRT pseudopotential model for tridimensional boiling simulation". International Journal of Thermal Sciences 179 (wrzesień 2022): 107637. http://dx.doi.org/10.1016/j.ijthermalsci.2022.107637.
Pełny tekst źródłaKulshrestha, O. P., i P. K. Srivastava. "Non-local model pseudopotential calculation of the phonon dispersions in titanium". Solid State Communications 55, nr 6 (sierpień 1985): 559–62. http://dx.doi.org/10.1016/0038-1098(85)90335-7.
Pełny tekst źródłaHuang, Rongzong, i Huiying Wu. "Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow". Journal of Computational Physics 327 (grudzień 2016): 121–39. http://dx.doi.org/10.1016/j.jcp.2016.09.030.
Pełny tekst źródłaQin, Zhangrong, Wanling Zhao, Yanyan Chen, Chaoying Zhang i Binghai Wen. "A pseudopotential multiphase lattice Boltzmann model based on high-order difference". International Journal of Heat and Mass Transfer 127 (grudzień 2018): 234–43. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.08.002.
Pełny tekst źródłaEbert, D., V. Ch Zhukovsky i E. A. Stepanov. "A pseudopotential model for Dirac electrons in graphene with line defects". Journal of Physics: Condensed Matter 26, nr 12 (4.03.2014): 125502. http://dx.doi.org/10.1088/0953-8984/26/12/125502.
Pełny tekst źródłaВасильев, И. А., О. М. Кущенко, С. С. Рудый i Ю. В. Рождественский. "Эффективный ротационный потенциал молекулярных ионов в плоской радиочастотной ловушке". Журнал технической физики 89, nr 9 (2019): 1457. http://dx.doi.org/10.21883/jtf.2019.09.48074.422-18.
Pełny tekst źródłaVora, Aditya M., i Alkesh L. Gandhi. "Phonon dynamics of Zr67Ni33 AND Fe80B20 binary glassy alloys". BIBECHANA 18, nr 1 (1.01.2021): 33–47. http://dx.doi.org/10.3126/bibechana.v18i1.28760.
Pełny tekst źródłaRAMAZANOV, T. S., i K. N. DZHUMAGULOVA. "Ionization equilibrium and thermodynamic and transport properties of a non-ideal hydrogen plasma". Journal of Plasma Physics 68, nr 4 (maj 2002): 241–47. http://dx.doi.org/10.1017/s0022377802001848.
Pełny tekst źródłaRuffino, Martina, Guy C. G. Skinner, Eleftherios I. Andritsos i Anthony T. Paxton. "Ising-like models for stacking faults in a free electron metal". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, nr 2242 (październik 2020): 20200319. http://dx.doi.org/10.1098/rspa.2020.0319.
Pełny tekst źródłaJenkins, S. J., i G. P. Srivastava. "Atomic Structure of a Monolayer of Ge on Si(001)(2 × 1)". Surface Review and Letters 05, nr 01 (luty 1998): 97–100. http://dx.doi.org/10.1142/s0218625x98000207.
Pełny tekst źródłaLi, Qing, J. Y. Huang i Q. J. Kang. "On the temperature equation in a phase change pseudopotential lattice Boltzmann model". International Journal of Heat and Mass Transfer 127 (grudzień 2018): 1112–13. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.139.
Pełny tekst źródłaWu, Yongyong, Nan Gui, Xingtuan Yang, Jiyuan Tu i Shengyao Jiang. "Fourth-order analysis of force terms in multiphase pseudopotential lattice Boltzmann model". Computers & Mathematics with Applications 76, nr 7 (październik 2018): 1699–712. http://dx.doi.org/10.1016/j.camwa.2018.07.022.
Pełny tekst źródłaLi, Q., D. H. Du, L. L. Fei i Kai H. Luo. "Three-dimensional non-orthogonal MRT pseudopotential lattice Boltzmann model for multiphase flows". Computers & Fluids 186 (maj 2019): 128–40. http://dx.doi.org/10.1016/j.compfluid.2019.04.014.
Pełny tekst źródłaKaur, S., i N. K. Ray. "A non-local pseudopotential in theFSGO model: Study of some organometallic systems". International Journal of Quantum Chemistry 39, nr 1 (styczeń 1991): 115–21. http://dx.doi.org/10.1002/qua.560390111.
Pełny tekst źródłaVERHEEST, FRANK, i MANFRED A. HELLBERG. "Ion-acoustic solitons in plasmas with two adiabatic constituents". Journal of Plasma Physics 76, nr 3-4 (18.12.2009): 277–86. http://dx.doi.org/10.1017/s0022377809990468.
Pełny tekst źródła