Gotowa bibliografia na temat „Pseudo relevance feedback”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Pseudo relevance feedback”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Pseudo relevance feedback"
Zhou, Dong, Mark Truran, Jianxun Liu i Sanrong Zhang. "Collaborative pseudo-relevance feedback". Expert Systems with Applications 40, nr 17 (grudzień 2013): 6805–12. http://dx.doi.org/10.1016/j.eswa.2013.06.030.
Pełny tekst źródłaParapar, Javier, Manuel A. Presedo-Quindimil i Álvaro Barreiro. "Score distributions for Pseudo Relevance Feedback". Information Sciences 273 (lipiec 2014): 171–81. http://dx.doi.org/10.1016/j.ins.2014.03.034.
Pełny tekst źródłaSakai, Tetsuya, Toshihiko Manabe i Makoto Koyama. "Flexible pseudo-relevance feedback via selective sampling". ACM Transactions on Asian Language Information Processing 4, nr 2 (czerwiec 2005): 111–35. http://dx.doi.org/10.1145/1105696.1105699.
Pełny tekst źródłaChen, Lin, Lin Chun, Lin Ziyu i Zou Quan. "Hybrid pseudo-relevance feedback for microblog retrieval". Journal of Information Science 39, nr 6 (23.05.2013): 773–88. http://dx.doi.org/10.1177/0165551513487846.
Pełny tekst źródłaZhong Minjuan, i Wan Changxuan. "Pseudo-Relevance Feedback Driven for XML Query Expansion". Journal of Convergence Information Technology 5, nr 9 (30.11.2010): 146–56. http://dx.doi.org/10.4156/jcit.vol5.issue9.15.
Pełny tekst źródłaMosbah, Mawloud, i Bachir Boucheham. "Pseudo relevance feedback based on majority voting mechanism". International Journal of Web Science 3, nr 1 (2017): 58. http://dx.doi.org/10.1504/ijws.2017.088688.
Pełny tekst źródłaMosbah, Mawloud, i Bachir Boucheham. "Pseudo relevance feedback based on majority voting mechanism". International Journal of Web Science 3, nr 1 (2017): 58. http://dx.doi.org/10.1504/ijws.2017.10009576.
Pełny tekst źródłaRoussinov, Dmitri, i Gheorghe Muresan. "Query expansion: Internet mining vs. pseudo relevance feedback". Proceedings of the American Society for Information Science and Technology 44, nr 1 (24.10.2008): 1–11. http://dx.doi.org/10.1002/meet.1450440271.
Pełny tekst źródłaKeikha, Andisheh, Faezeh Ensan i Ebrahim Bagheri. "Query expansion using pseudo relevance feedback on wikipedia". Journal of Intelligent Information Systems 50, nr 3 (17.05.2017): 455–78. http://dx.doi.org/10.1007/s10844-017-0466-3.
Pełny tekst źródłaNa, Seung-Hoon, i Kangil Kim. "Verbosity normalized pseudo-relevance feedback in information retrieval". Information Processing & Management 54, nr 2 (marzec 2018): 219–39. http://dx.doi.org/10.1016/j.ipm.2017.09.006.
Pełny tekst źródłaRozprawy doktorskie na temat "Pseudo relevance feedback"
Billerbeck, Bodo, i bodob@cs rmit edu au. "Efficient Query Expansion". RMIT University. Computer Science and Information Technology, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20060825.154852.
Pełny tekst źródłaDeveaud, Romain. "Vers une représentation du contexte thématique en Recherche d'Information". Phd thesis, Université d'Avignon, 2013. http://tel.archives-ouvertes.fr/tel-00918877.
Pełny tekst źródłaHtait, Amal. "Sentiment analysis at the service of book search". Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0260.
Pełny tekst źródłaThe web technology is in an on going growth, and a huge volume of data is generated in the social web, where users would exchange a variety of information. In addition to the fact that social web text may be rich of information, the writers are often guided by provoked sentiments reflected in their writings. Based on that concept, locating sentiment in a text can play an important role for information extraction. The purpose of this thesis is to improve the book search and recommendation quality of the Open Edition's multilingual Books platform. The Books plat- form also offers additional information through users generated information (e.g. book reviews) connected to the books and rich in emotions expressed in the users' writings. Therefore, the previous analysis, concerning locating sentiment in a text for information extraction, plays an important role in this thesis, and can serve the purpose of quality improvement concerning book search, using the shared users generated information. Accordingly, we choose to follow a main path in this thesis to combine sentiment analysis (SA) and information retrieval (IR) fields, for the purpose of improving the quality of book search. Two objectives are summarised in the following, which serve the main purpose of the thesis in the IR quality improvement using SA: • An approach for SA prediction, easily applicable on different languages, low cost in time and annotated data. • New approaches for book search quality improvement, based on SA employment in information filtering, retrieving and classifying
Lee, Chia-Jung, i 李佳容. "A Block-based Pseudo Relevance Feedback Algorithm for Image Retrieval". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/18200220613383670902.
Pełny tekst źródła國立中央大學
資訊管理學系
101
Nowadays the network has become one of the important ways to obtain information. Therefore, it is important to effectively search for information. For image search, CBIR (Content-Based Image Retrieval) is major technique. However, the semantic gap problem limits the performance of CBIR systems. In literature, RF (Relevance Feedback) can be used to improve the retrieval performance of CBIR systems. It is usually based on asking users to give feedbacks, and the retrieval results are re-ranked. One major limitation of RF is the need of the user in the loop process. To this end, PRF (Pseudo Relevance Feedback) was proposed that considers top-k images as the pseudo feedbacks to re-rank the retrieval results. This thesis proposes an algorithm called Block-Based Pseudo Relevance Feedback (BBPRF) to improve the traditional PRF approach. The idea of this algorithm is to assign higher weights to higher ranked images. Particularly, top-k images as the feedbacks are divided into two to k blocks and each block has a specific weight, so the weighted feedbacks will benefit the next feedback iteration. The experiments are based on the NUS-WIDE and Caltech256 datasets and the Rocchio algorithm is used as the traditional feedback algorithm. The first experimental results show that our proposed BBPRF performs better than the traditional PRF approach in terms of precision at 10, 20, and 50. In particularly, using top 30 images with 30 blocks perform the best. The second study further integrates the user’s feedbacks and BBPRF, and the retrieval performance is even better than using BBPRF alone.
Wu, Ji Wei, i 吳智瑋. "Improving Information Retrieval Performance by an Enhanced Pseudo Relevance Feedback Algorithm". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/58994995075025603190.
Pełny tekst źródła中華大學
資訊工程學系(所)
96
Owing to the rapid growth and popularization of Internet and information technology, information retrieval systems has become a necessary part of our modern life. Users find valuable information from either digital libraries or the Internet by a few keywords or a nature language sentence. However, the quality of an information retrieval system relies heavily on the accuracy of the information retrieved. The retrieved information should be not only matched the user’s query, but also ranked well according to its relevance to the user’s query. In the literatures, researchers found that Relevance Feedback (RF) information is quite useful for an information retrieval system to improve its accuracy. Among the proposed relevance feedback algorithms, the standard Rocchio’s relevance feedback algorithm is the most well-known and widely employed in information retrieval systems. Furthermore, the idea of pseudo relevance feedback was proposed for the relevance feedback algorithms. It reduces user’s burden by deciding automatically relevant and irrelevant documents according to the ranks of the retrieval results. Although relevance feedback algorithms can be used to improve retrieval performance, they do not discriminate well the degree of importance on either documents or terms. To cope with this problem, an enhanced pseudo relevance feedback algorithm is proposed in this thesis. Experimental results showed that the performance of the proposed algorithm outperforms the standard Rocchio’s relevance feedback algorithm.
陳憶文. "Exploring Effective Pseudo-Relevance Feedback and Proximity Information for Speech Retrieval and Transcription". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/24695216658836083699.
Pełny tekst źródła國立臺灣師範大學
資訊工程學系
101
Pseudo-relevance feedback is by far the most commonly-used paradigm for query reformulation in spoken document retrieval, which assumes that a small amount of top-ranked feedback documents obtained from the initial retrieval are relevant and can be utilized for query expansion. Nevertheless, simply taking all of the top-ranked feedback documents acquired from the initial retrieval for query modeling does not necessary work well, especially when the top-ranked documents contain much redundant or non-relevant cues. In view of this, we explore different kinds of information cues for selecting helpful feedback documents to further improve information retrieval. On the other hand, relevance model (RM) based on “bag-of-words” assumption, which can facilitate the derivation and estimation, may be oversimplified for the task of language modeling in speech recognition. Hence, we also enhance RM in two significant aspects. First, “bag-of-words” assumption of RM is relaxed by incorporating word proximity information into RM formulation. Second, topic-based proximity information is additionally explored to further enhance the proximity-based RM framework. Experiments conducted on not only a spoken document retrieval task but also a speech recognition task indicates that our approaches can bring competitive utilities to existing ones.
陳俊諭. "A Study on Integrating Document Relatedness and Query Clarity Information for Improved Pseudo-Relevance Feedback". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/07913424667955135602.
Pełny tekst źródła國立臺灣師範大學
資訊工程學系
102
Pseudo-relevant document selection figures prominently in query reformulation with pseudo-relevance feedback (PRF) for an information retrieval (IR) system. Most of conventional IR systems select pseudo-relevant documents for query reformulation simply based on the query-document relevance scores returned by the initial round of retrieval. In this thesis, we propose a novel method for pseudo-relevant document selection that considers not only the query-document relevance scores but also the relatedness cues among documents. To this end, we adopt and formalize the notion of Markov random walk (MRW) to glean the relatedness cues among documents, which in turn can be used in concert with the query-document relevance scores to select representative documents for PRF. Furthermore, on top of the language modeling (LM) framework for IR, we also investigate how to effectively combine the original query model and new query model estimated from the selected pseudo-relevant documents in a more effective manner by virtue of the so-called query clarity measure. A series of experiments conducted on both the TDT (Topic Detection and Tracking) collection and the WSJ (Wall Street Journal) collection seem to demonstrate the performance merits of our proposed methods.
Części książek na temat "Pseudo relevance feedback"
Yan, Rong, i Guanglai Gao. "Pseudo Topic Analysis for Boosting Pseudo Relevance Feedback". W Web and Big Data, 345–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26072-9_26.
Pełny tekst źródłaYan, Rong, Alexander Hauptmann i Rong Jin. "Multimedia Search with Pseudo-relevance Feedback". W Lecture Notes in Computer Science, 238–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45113-7_24.
Pełny tekst źródłaYan, Rong, Alexander G. Hauptmann i Rong Jin. "Pseudo-Relevance Feedback for Multimedia Retrieval". W Video Mining, 309–38. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6928-9_11.
Pełny tekst źródłaRaman, Karthik, Raghavendra Udupa, Pushpak Bhattacharya i Abhijit Bhole. "On Improving Pseudo-Relevance Feedback Using Pseudo-Irrelevant Documents". W Lecture Notes in Computer Science, 573–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12275-0_50.
Pełny tekst źródłaWhiting, Stewart, Iraklis A. Klampanos i Joemon M. Jose. "Temporal Pseudo-relevance Feedback in Microblog Retrieval". W Lecture Notes in Computer Science, 522–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28997-2_55.
Pełny tekst źródłaTanioka, Hiroki. "Pseudo Relevance Feedback Using Fast XML Retrieval". W Lecture Notes in Computer Science, 218–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03761-0_22.
Pełny tekst źródłaGeng, Bin, Fang Zhou, Jiao Qu, Bo-Wen Zhang, Xiao-Ping Cui i Xu-Cheng Yin. "Social Book Search with Pseudo-Relevance Feedback". W Neural Information Processing, 203–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12640-1_25.
Pełny tekst źródłaWu, Yuanbin, Qi Zhang, Yaqian Zhou i Xuanjing Huang. "Pseudo-Relevance Feedback Based on mRMR Criteria". W Information Retrieval Technology, 211–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17187-1_20.
Pełny tekst źródłaAriannezhad, Mozhdeh, Ali Montazeralghaem, Hamed Zamani i Azadeh Shakery. "Iterative Estimation of Document Relevance Score for Pseudo-Relevance Feedback". W Lecture Notes in Computer Science, 676–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56608-5_65.
Pełny tekst źródłaJalali, Vahid, i Mohammad Reza Matash Borujerdi. "Concept Based Pseudo Relevance Feedback in Biomedical Field". W Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 69–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01203-7_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Pseudo relevance feedback"
Lv, Yuanhua, i ChengXiang Zhai. "Positional relevance model for pseudo-relevance feedback". W Proceeding of the 33rd international ACM SIGIR conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1835449.1835546.
Pełny tekst źródłaClough, Paul, i Mark Sanderson. "Measuring pseudo relevance feedback & CLIR". W the 27th annual international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1008992.1009082.
Pełny tekst źródłaPu, Qiang, i Daqing He. "Pseudo relevance feedback using semantic clustering in relevance language model". W Proceeding of the 18th ACM conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1645953.1646268.
Pełny tekst źródłaWhiting, Stewart, Yashar Moshfeghi i Joemon M. Jose. "Exploring term temporality for pseudo-relevance feedback". W the 34th international ACM SIGIR conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2009916.2010141.
Pełny tekst źródłaAljubran, Murtadha. "Evaluation of Pseudo-Relevance Feedback using Wikipedia". W NLPIR 2019: 2019 the 3rd International Conference on Natural Language Processing and Information Retrieval. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3342827.3342845.
Pełny tekst źródłaHe, Tingting, i Xionglu Dai. "Pseudo-relevance feedback query based on Wikipedia". W 2012 IEEE International Conference on Granular Computing (GrC-2012). IEEE, 2012. http://dx.doi.org/10.1109/grc.2012.6468659.
Pełny tekst źródłaZamani, Hamed, Javid Dadashkarimi, Azadeh Shakery i W. Bruce Croft. "Pseudo-Relevance Feedback Based on Matrix Factorization". W CIKM'16: ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2983323.2983844.
Pełny tekst źródłaSakai, Tetsuya, i Stephen E. Robertson. "Flexible pseudo-relevance feedback using optimization tables". W the 24th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/383952.384035.
Pełny tekst źródłaGanguly, Debasis, Johannes Leveling, Walid Magdy i Gareth J. F. Jones. "Patent query reduction using pseudo relevance feedback". W the 20th ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2063576.2063863.
Pełny tekst źródłaKeikha, Mostafa, Jangwon Seo, W. Bruce Croft i Fabio Crestani. "Predicting document effectiveness in pseudo relevance feedback". W the 20th ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2063576.2063890.
Pełny tekst źródła