Gotowa bibliografia na temat „Proteins - Conformation Dynamics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Proteins - Conformation Dynamics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Proteins - Conformation Dynamics"
Kang, Hyun-Seo, i Michael Sattler. "Capturing dynamic conformational shifts in protein–ligand recognition using integrative structural biology in solution". Emerging Topics in Life Sciences 2, nr 1 (20.04.2018): 107–19. http://dx.doi.org/10.1042/etls20170090.
Pełny tekst źródłaGaraizar, Adiran, Ignacio Sanchez-Burgos, Rosana Collepardo-Guevara i Jorge R. Espinosa. "Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid–Liquid Phase Separation". Molecules 25, nr 20 (15.10.2020): 4705. http://dx.doi.org/10.3390/molecules25204705.
Pełny tekst źródłaBrouhard, Gary J., i Luke M. Rice. "The contribution of αβ-tubulin curvature to microtubule dynamics". Journal of Cell Biology 207, nr 3 (10.11.2014): 323–34. http://dx.doi.org/10.1083/jcb.201407095.
Pełny tekst źródłaGormal, Rachel S., Pranesh Padmanabhan, Ravikiran Kasula, Adekunle T. Bademosi, Sean Coakley, Jean Giacomotto, Ailisa Blum i in. "Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies". Proceedings of the National Academy of Sciences 117, nr 48 (19.11.2020): 30476–87. http://dx.doi.org/10.1073/pnas.2007443117.
Pełny tekst źródłaMizutani, Tadashi, i Shigeyuki Yagi. "Linear tetrapyrroles as functional pigments in chemistry and biology". Journal of Porphyrins and Phthalocyanines 08, nr 03 (marzec 2004): 226–37. http://dx.doi.org/10.1142/s1088424604000210.
Pełny tekst źródłaRamirez-Mondragon, Carlos A., Megin E. Nguyen, Jozafina Milicaj, Bakar A. Hassan, Frank J. Tucci, Ramaiah Muthyala, Jiali Gao, Erika A. Taylor i Yuk Y. Sham. "Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics". International Journal of Molecular Sciences 22, nr 9 (28.04.2021): 4619. http://dx.doi.org/10.3390/ijms22094619.
Pełny tekst źródłaKulkarni, Prakash, Vitor B. P. Leite, Susmita Roy, Supriyo Bhattacharyya, Atish Mohanty, Srisairam Achuthan, Divyoj Singh i in. "Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma". Biophysics Reviews 3, nr 1 (marzec 2022): 011306. http://dx.doi.org/10.1063/5.0080512.
Pełny tekst źródłaWestenhoff, Sebastian, Elena Nazarenko, Erik Malmerberg, Jan Davidsson, Gergely Katona i Richard Neutze. "Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches". Acta Crystallographica Section A Foundations of Crystallography 66, nr 2 (18.02.2010): 207–19. http://dx.doi.org/10.1107/s0108767309054361.
Pełny tekst źródłaYang, Jing, Jing Chen i Zibiao Li. "Structural Basis for the Structure–Activity Behaviour of Oxaliplatin and its Enantiomeric Analogues: A Molecular Dynamics Study of Platinum-DNA Intrastrand Crosslink Adducts". Australian Journal of Chemistry 69, nr 4 (2016): 379. http://dx.doi.org/10.1071/ch15624.
Pełny tekst źródłaLi, Haiyan, Zanxia Cao, Guodong Hu, Liling Zhao, Chunling Wang i Jihua Wang. "Ligand-induced structural changes analysis of ribose-binding protein as studied by molecular dynamics simulations". Technology and Health Care 29 (25.03.2021): 103–14. http://dx.doi.org/10.3233/thc-218011.
Pełny tekst źródłaRozprawy doktorskie na temat "Proteins - Conformation Dynamics"
Ceres, Nicoletta. "Coarse-grain modeling of proteins : mechanics, dynamics and function". Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10030.
Pełny tekst źródłaProteins are flexible molecules, which accomplish a variety of cellular tasks through mechanical motions and conformational fluctuations encoded in their three-dimensional structure. Amongst the theoretical approaches contributing to a better understanding of the relationship between protein structure, mechanics, dynamics and function, coarse-grain models are a powerful tool. They can be used to integrate structural and dynamic information over broad time and size scales at a low computational cost, achieved by averaging out the less important degrees of freedom. In this work, fast comparative studies of protein flexibility and mechanics have been performed with the simple coarse-grain Elastic Network Model. However, the dependency of the results on the starting conformation, and the rather constrained backbone dynamics imposed by the harmonic approximation, motivated the development of a new approach, for a more extensive exploration of conformational space. These efforts led to the PaLaCe model, designed to allow significant changes in secondary structure, while maintaining residue specificity despite a lower-level resolution. Using PaLaCe, we were able to reproduce two processes involving protein plasticity: the mechanical unfolding of the I27 domain of the giant muscle protein titin and the near-native dynamics of two homologous enzymes adapted to work at different temperatures. Agreement with experimental data and results from published atomistic models demonstrate that PaLaCe is a reliable, sufficiently accurate, but computationally inexpensive approach. It therefore opens the doors for a systematic investigation of the link between protein dynamics/mechanics and function
Kragelj, Jaka. "Structure and dynamics of intrinsically disordered regions of MAPK signalling proteins". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENV060/document.
Pełny tekst źródłaProtein signal transduction pathways allow cells respond to and process signals from the environment. A group of such pathways, called mitogen-activated protein kinase (MAPK) signal transduction pathways, is well conserved in all eukaryotic cells and is involved in regulating many important cell processes. Long intrinsically disordered region (IDRs), present in many MAPKs, have remained structurally uncharacterised. The IDRs of MAPKs are especially important as they contain docking-site motifs which control the interactions between MAPK proteins themselves and also between MAPKs and other interacting proteins containing the same motifs. Nuclear magnetic resonance (NMR) spectroscopy in combination with other biophysical techniques was used to study IDRs of MAPKs. NMR spectroscopy is well suited for studying intrinsically disordered proteins (IDPs) at atomic-level resolution. NMR observables, such as for example chemical shifts and residual dipolar couplings, can be used together with ensemble selection methods to study residual structure in IDRs. Nuclear spin relaxation informs us about fast pico-nanosecond motions. NMR titrations and exchange spectroscopy techniques can be used to monitor kinetics of protein-protein interactions. The mechanistic insight into function of IDRs and motifs will contribute to understanding of how signal transduction pathways work
Murzycki, Jennifer E. "Probing Protein Dynamics Through Mutational and Computational Studies of HIV-1 Protease: A Dissertation". eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/166.
Pełny tekst źródłaAbyzov, Anton. "Nuclear Magnetic Resonance Studies of the Dynamics and Thermodynamics of Intrinsically Disordered Proteins". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY026/document.
Pełny tekst źródłaIntrinsically disordered proteins (IDPs) are highly flexible heteropolymers, implicated in important cellular activities (signal transduction, molecular recognition, transcription, translation, etc.) and representing potential drug targets against cancer and neurodegenerative diseases, whose dynamic modes define their biological function. Although the conformational states sampled by IDPs are relatively well understood, essentially nothing is known about the associated dynamic timescales. In this study we investigate the conformational behavior of the intrinsically disordered C-terminal domain of the nucleoprotein of Sendai virus (NTAIL), which interacts with the PX domain of the phosphoprotein. The interaction site has been shown to sample an equilibrium of discrete helices in the free state, which forms an encounter complex implicating the stabilization of one of the helical conformers upon interaction with PX, prior to diffusing on the surface of PX and engaging in the actual binding site. However, very little is known about the timescales of chain motions, which surely play a role in the interaction kinetics, in particular in terms of the on-rate of the interaction. This 124 amino acid protein also provides a good model system, containing long unfolded domains with chain-like dynamics and regions with residual structure. The measurement of extensive set of coherent relaxation rates at multiple magnetic fields, multiple temperatures and in three different length constructs of the same IDP has allowed us to characterize the dynamic nature of NTAIL in unprecedented detail. By analyzing the relaxation data using extended model-free approach, we show that fast (≤ 50 ps) components of the correlation function report on librational motions. A dominant mode occurs on timescales around one nanosecond, apparently reporting on backbone sampling within Ramachandran sub-states, while a slower component (5-25 ns) reports on segmental dynamics dominated by the chain-like nature of the protein. The ability to delineate intrinsic modes and timescales will improve our understanding of the behavior and function of IDPs
Link, Justin J. "Ultrafast Protein Conformation Dynamics". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1230584570.
Pełny tekst źródłaDorywalska, Magdalena. "Conformational dynamics of protein synthesis /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Pełny tekst źródłaZang, Chen. "Ultrafast Spectroscopic Study of Protein Conformation Dynamics and Hydration Dynamics". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299481658.
Pełny tekst źródłaBossa, Cecilia. "Conformational fluctuations in proteins. A molecular dynamics based study". Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/916821.
Pełny tekst źródłaChen, Wei. "Molecular dynamics simulations of binding, unfolding, and global conformational changes of signaling and adhesion molecules". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28118.
Pełny tekst źródłaCommittee Chair: Zhu, Cheng; Committee Member: Harvey, Stephen; Committee Member: Hud, Nicholas; Committee Member: Zamir, Evan; Committee Member: Zhu, Ting.
Bruce, Neil John. "Investigating protein conformational change via molecular dynamics simulation". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/investigating-protein-conformational-change-via-molecular-dynamics-simulation(17145939-f643-4b23-bbb9-029cf5489c15).html.
Pełny tekst źródłaKsiążki na temat "Proteins - Conformation Dynamics"
Livesay, Dennis R. Protein dynamics: Methods and protocols. New York: Humana Press, 2013.
Znajdź pełny tekst źródłaSubbiah, S. Protein motions. New York: Chaoman & Hall, 1996.
Znajdź pełny tekst źródłaInternational Symposium on Structure and Dynamics of Nucleic Acids, Proteins, and Membranes (1986 Riva, Italy). Structure and dynamics of nucleic acids, proteins, and membranes. New York: Plenum Press, 1986.
Znajdź pełny tekst źródłaHan, Ke-li, Xin Zhang i Ming-jun Yang, red. Protein Conformational Dynamics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02970-2.
Pełny tekst źródłaRupp, Bernhard. Biomolecular crystallography. New York, NY: Garland Science, 2010.
Znajdź pełny tekst źródłaRupp, Bernhard. Biomolecular crystallography. New York, NY: Garland Science, 2010.
Znajdź pełny tekst źródłaCourse on Dynamics and the Problem of Recognition in Biological Macromolecules (2nd 1995 Erice, Italy). Dynamics and the problem of recognition in biological macromolecules. New York: Plenum Press, 1996.
Znajdź pełny tekst źródłaXin, Zhang, Ke-li Han i Ming-jun Yang. Protein Conformational Dynamics. Springer, 2014.
Znajdź pełny tekst źródłaXin, Zhang, Ke-Li Han i Ming-jun Yang. Protein Conformational Dynamics. Springer International Publishing AG, 2016.
Znajdź pełny tekst źródłaXin, Zhang, Ke-Li Han i Ming-jun Yang. Protein Conformational Dynamics. Springer London, Limited, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Proteins - Conformation Dynamics"
Balasubramaniam, A., S. G. Huang, S. Sheriff, M. Prabhakaran i V. Renugopalakrishnan. "Solution conformation of neuropeptide Y: 2D NMR and molecular dynamics studies". W Proteins, 79–81. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-010-9063-6_11.
Pełny tekst źródłaWüthrich, Kurt. "Conformation of Non-Crystalline Proteins Viewed by NMR". W Structure and Dynamics of Nucleic Acids, Proteins, and Membranes, 21–29. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5308-9_2.
Pełny tekst źródłaChoi, Ucheor B., Keith R. Weninger i Mark E. Bowen. "Immobilization of Proteins for Single-Molecule Fluorescence Resonance Energy Transfer Measurements of Conformation and Dynamics". W Intrinsically Disordered Protein Analysis, 3–20. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3704-8_1.
Pełny tekst źródłaSo, Pui-Kin. "Hydrogen–Deuterium Exchange Mass Spectrometry for Probing Changes in Conformation and Dynamics of Proteins". W Methods in Molecular Biology, 159–73. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0892-0_10.
Pełny tekst źródłaMao, Youdong. "Structure, Dynamics and Function of the 26S Proteasome". W Subcellular Biochemistry, 1–151. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58971-4_1.
Pełny tekst źródłaBarth, Marie, i Carla Schmidt. "Quantitative Cross-Linking of Proteins and Protein". W Methods in Molecular Biology, 385–400. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1024-4_26.
Pełny tekst źródłaTan, Yan-Wen, Jeffrey A. Hanson, Jhih-Wei Chu i Haw Yang. "Confocal Single-Molecule FRET for Protein Conformational Dynamics". W Protein Dynamics, 51–62. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-658-0_3.
Pełny tekst źródłaZheng, Wenjun, i Mustafa Tekpinar. "Analysis of Protein Conformational Transitions Using Elastic Network Model". W Protein Dynamics, 159–72. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-658-0_9.
Pełny tekst źródłaEichinger, Markus, Berthold Heymann, Helmut Heller, Helmut Grubmüller i Paul Tavan. "Conformational Dynamics Simulations of Proteins". W Computational Molecular Dynamics: Challenges, Methods, Ideas, 78–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58360-5_4.
Pełny tekst źródłaHills, Ronald D. "Balancing Bond, Nonbond, and Gō-Like Terms in Coarse Grain Simulations of Conformational Dynamics". W Protein Dynamics, 123–40. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-658-0_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Proteins - Conformation Dynamics"
Karplus, M. "Internal dynamics of macromolecules : Simulations of motion in proteins". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.thb1.
Pełny tekst źródłaXu, Yangqing, i Gang Bao. "Protein Conformational Changes Under Applied Forces". W ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0408.
Pełny tekst źródłaKazerounian, Kazem, Khalid Latif, Kimberly Rodriguez i Carlos Alvarado. "ProtoFold: Part I — Nanokinematics for Analysis of Protein Molecules". W ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57243.
Pełny tekst źródłaDyer, R. Brian, i Timothy P. Causgrove. "Ultrafast Protein Relaxation: Time-Resolved Infrared Studies of Protein Dynamics Triggered by CO Photodissociation from CO Myoglobin". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.tub.4.
Pełny tekst źródłaLim, Manko, Timothy A. Jackson i Philip A. Anfinrud. "Ultrafast Near-IR Spectroscopy of Carbonmonoxymyoglobin: the Dynamics of Protein Relaxation". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.thb3.
Pełny tekst źródłaJewel, Yead, Prashanta Dutta i Jin Liu. "Coarse-Grained Molecular Dynamics Simulations of Sugar Transport Across Lactose Permease". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52337.
Pełny tekst źródłaLeeson, D. Thorn, i D. A. Wiersma. "Long-Lived Stimulated Photon Echo Studies of Protein and Glass Dynamics". W Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.thb1.
Pełny tekst źródłaMaghsoodi, Ameneh, Anupam Chatterjee, Ioan Andricioaei i Noel Perkins. "An Approximate Model of the Dynamics of the Bacteriophage T4 Injection Machinery". W ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60281.
Pełny tekst źródłaCortés, Juan, i Ibrahim Al-Bluwi. "A Robotics Approach to Enhance Conformational Sampling of Proteins". W ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70105.
Pełny tekst źródłaBao, Gang, i Shannon Stott. "Langevin Dynamics of Hinge-Motion in Proteins". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2634.
Pełny tekst źródłaRaporty organizacyjne na temat "Proteins - Conformation Dynamics"
Hanke, Andreas. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2008. http://dx.doi.org/10.21236/ada483440.
Pełny tekst źródłaMarkelz, Andrea G. Terahertz Time Domain Spectroscopy of Conformational Dynamics of Sensor Proteins: Basic Research and Pathogen Sensor Development. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2004. http://dx.doi.org/10.21236/ada426482.
Pełny tekst źródła