Gotowa bibliografia na temat „Protein targeted lead molecule”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Protein targeted lead molecule”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Protein targeted lead molecule"
Hyun, Soonsil, i Dongyun Shin. "Chemical-Mediated Targeted Protein Degradation in Neurodegenerative Diseases". Life 11, nr 7 (24.06.2021): 607. http://dx.doi.org/10.3390/life11070607.
Pełny tekst źródłaGiardina, Sarah F., Elena Valdambrini, Michael Peel, Manny D. Bacolod, Mace L. Rothenberg, Richard B. Lanman, J. David Warren i Francis Barany. "Cure-PROs: Next-generation targeted protein degraders." Journal of Clinical Oncology 41, nr 16_suppl (1.06.2023): e15101-e15101. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e15101.
Pełny tekst źródłaMusielak, Bogdan, Weronika Janczyk, Ismael Rodriguez, Jacek Plewka, Dominik Sala, Katarzyna Magiera-Mularz i Tad Holak. "Competition NMR for Detection of Hit/Lead Inhibitors of Protein–Protein Interactions". Molecules 25, nr 13 (1.07.2020): 3017. http://dx.doi.org/10.3390/molecules25133017.
Pełny tekst źródłaThomas, Bedwyr ab Ion, H. Lois Lewis, D. Heulyn Jones i Simon E. Ward. "Central Nervous System Targeted Protein Degraders". Biomolecules 13, nr 8 (25.07.2023): 1164. http://dx.doi.org/10.3390/biom13081164.
Pełny tekst źródłaDas, Debanu, Matthew Duncton, Patricia Pellicena, Ashley Deacon, David Wilson i Millie Georgiadis. "Development of a DNA damage response (DDR) therapeutics platform for oncology." Journal of Clinical Oncology 39, nr 15_suppl (20.05.2021): e15036-e15036. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e15036.
Pełny tekst źródłaMilosevic, Ivana. "Resistance to targeted therapy in chronic lymphocytic leukemia". Medical review 75, Suppl. 1 (2022): 57–61. http://dx.doi.org/10.2298/mpns22s1057m.
Pełny tekst źródłaQokoyi, Ndibonani Kebonang, Priscilla Masamba i Abidemi Paul Kappo. "Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development". Vaccines 9, nr 7 (8.07.2021): 762. http://dx.doi.org/10.3390/vaccines9070762.
Pełny tekst źródłaOlsen, Sarah Naomi, Laura Godfrey, James P. Healy, Charles Hatton i Scott A. Armstrong. "Abstract 681: Targeted MLL-AF9 degradation is phenocopied by combined DOT1L and Menin inhibition". Cancer Research 82, nr 12_Supplement (15.06.2022): 681. http://dx.doi.org/10.1158/1538-7445.am2022-681.
Pełny tekst źródłaKhattri, Ram B., Daniel L. Morris, Stephanie M. Bilinovich, Erendra Manandhar, Kahlilah R. Napper, Jacob W. Sweet, David A. Modarelli i Thomas C. Leeper. "Identifying Ortholog Selective Fragment Molecules for Bacterial Glutaredoxins by NMR and Affinity Enhancement by Modification with an Acrylamide Warhead". Molecules 25, nr 1 (30.12.2019): 147. http://dx.doi.org/10.3390/molecules25010147.
Pełny tekst źródłaYang, Kylie, Jacek L. Kolanowski i Elizabeth J. New. "Mitochondrially targeted fluorescent redox sensors". Interface Focus 7, nr 2 (6.04.2017): 20160105. http://dx.doi.org/10.1098/rsfs.2016.0105.
Pełny tekst źródłaRozprawy doktorskie na temat "Protein targeted lead molecule"
Nilsson, Jonas. "Design, Synthesis and Characterization of Small Molecule Inhibitors and Small Molecule : Peptide Conjugates as Protein Actors". Doctoral thesis, Linköpings universitet, Organisk Kemi, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-3943.
Pełny tekst źródłaNacheva, Katya Pavlova. "Development of a Bio-Molecular Fluorescent Probe Used in Kinetic Target-Guided Synthesis for the Identification of Inhibitors of Enzymatic and Protein-Protein Interaction Targets". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4376.
Pełny tekst źródłaVerow, Mark. "The development and validation of small molecule inhibitors targeted against the HIV-l Nef protein". Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.659183.
Pełny tekst źródłaOmar, Hany Ahmed Mostafa Mohamed. "Molecular Pharmacology and Preclinical Studies of Novel Small-molecule Targeted Agents for The Treatment of Hepatocellular Carcinoma". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1290565602.
Pełny tekst źródłaFarrington, Caroline Cain. "TARGETED DEGRADATION OF THE MYC ONCOGENE USING PP2AB56ALPHASELECTIVE SMALL MOLECULE MODULATORS OF PROTEINPHOSPHATASE 2A AS A THERAPEUTIC STRATEGY FOR TREATING MYCDRIVENCANCERS". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1579905487094187.
Pełny tekst źródłaLu, Felice. "Protein inhibition by targeted small molecule libraries /". 2005. http://wwwlib.umi.com/dissertations/search.
Pełny tekst źródłaMatos, Ana Marta de Jesus Gomes de. "From a multitarget antidiabetic glycosyl isoflavone towards new molecular entities against diabetes and Alzheimer’s disease : generation of lead series and target assessment". Doctoral thesis, 2018. http://hdl.handle.net/10451/42532.
Pełny tekst źródłaBhowmick, Tuhin. "Crystal Structure Of Mycobacterium Tuberculosis Histone Like Protein HU And Structure Based Design Of Molecules To Inhibit MtbHU-DNA Interaction : Leads For A New Target. Structure Aided Computational Analysis Of Metal Coordinated Complexes Containing Amino Acids And Organic Moieties Designed For Photo Induced DNA Cleavage". Thesis, 2012. http://hdl.handle.net/2005/2469.
Pełny tekst źródłaKsiążki na temat "Protein targeted lead molecule"
Cui, Zhao, Neil Turner i Ming-hui Zhao. Alport post-transplant antiglomerular basement membrane disease. Redaktor Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0075.
Pełny tekst źródłaColbert, Robert A., i Paul Bowness. Immune mechanisms: HLA-B27. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198734444.003.0006.
Pełny tekst źródłaMalcangio, Marzia. Glia. Redaktorzy Paul Farquhar-Smith, Pierre Beaulieu i Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0035.
Pełny tekst źródłaBeattie, R. Mark, Anil Dhawan i John W.L. Puntis. The pancreas. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569862.003.0046.
Pełny tekst źródłaGropman, Andrea L., Belen Pappa i Nicholas Ah Mew. The Urea Cycle Disorders. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0063.
Pełny tekst źródłaCzęści książek na temat "Protein targeted lead molecule"
Weber, L. "Discovery of New MCRs, Chemical Evolution and Lead Optimization". W Small Molecule — Protein Interactions, 189–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05314-0_12.
Pełny tekst źródłaWhitty, Adrian. "Small-Molecule Inhibitors of Protein-Protein Interactions: Challenges and Prospects". W Gene Family Targeted Molecular Design, 199–233. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470423936.ch7.
Pełny tekst źródłaUrsu, Andrei, Matthew G. Costales, Jessica L. Childs-Disney i Matthew D. Disney. "Chapter 15. Small-molecule Targeted Degradation of RNA". W Protein Degradation with New Chemical Modalities, 317–36. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160691-00317.
Pełny tekst źródłaPrakash, Om, i Feroz Khan. "CoSSDb: A Database of Co-crystallized Ligand Sub-structures for Anticancer Lead Designing & Optimization". W Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 133–41. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_14.
Pełny tekst źródłaSharma, Sahil, i Cynthia M. Sharma. "Identification of RNA Binding Partners of CRISPR-Cas Proteins in Prokaryotes Using RIP-Seq". W Methods in Molecular Biology, 111–33. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1851-6_6.
Pełny tekst źródłaJayaraj, Abhilash, Ruchika Bhat, Amita Pathak, Manpreet Singh i B. Jayaram. "Development of a Web-Server for Identification of Common Lead Molecules for Multiple Protein Targets". W Methods in Pharmacology and Toxicology, 487–504. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7653_2018_9.
Pełny tekst źródłaTakaoka, Yousuke, i Minoru Ueda. "Enantiodifferential Approach for the Target Protein Detection of the Jasmonate Glucoside That Controls the Leaf Closure of Samanea saman". W Methods in Molecular Biology, 149–58. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7874-8_13.
Pełny tekst źródłaRamos, Kenneth S., Stefano Guerra i Randa El-Zein. "Precision Medicine Approaches for Stratification and Development of Novel Therapies of Latin(x) Patients at Risk of Lung Malignancy". W Advancing the Science of Cancer in Latinos, 89–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14436-3_8.
Pełny tekst źródłaDas, Amit, i Simanti Bhattacharya. "Different Types of Molecular Docking Based on Variations of Interacting Molecules". W Pharmaceutical Sciences, 795–819. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch031.
Pełny tekst źródłaDas, Amit, i Simanti Bhattacharya. "Different Types of Molecular Docking Based on Variations of Interacting Molecules". W Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery, 148–72. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0115-2.ch006.
Pełny tekst źródłaStreszczenia konferencji na temat "Protein targeted lead molecule"
Quertermous, T., J. M. Schnee, M. S. Runge, G. R. Matsueda, N. W. Hudson, J. G. Seidman i E. Haber. "EXPRESSION OF A RECOMBINANT ANTIBODY-TARGETED THROMBOLYTIC MOLECULE". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644616.
Pełny tekst źródłaTurchi, John, Katherine S. Pawelczak, Navnath Gavande i Pamela S. VanderVere-Carozza. "Abstract A095: Targeting protein-DNA interactions in the DNA damage response: Lead identification and optimization for novel inhibitors of RPA and Ku". W Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-a095.
Pełny tekst źródłaChen, Kok Hao, i Jong Hyun Choi. "DNA Oligonucleotide-Templated Nanocrystals: Synthesis and Novel Label-Free Protein Detection". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11958.
Pełny tekst źródłaSarkar, Saugata, i Marissa Nichole Rylander. "Treatment Planning Model for Nanotube-Mediated Laser Cancer Therapy". W ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192997.
Pełny tekst źródłaTavousi, Pouya, Morad Behandish, Kazem Kazerounian i Horea T. Ilieş. "An Improved Free Energy Formulation and Implementation for Kinetostatic Protein Folding Simulation". W ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12671.
Pełny tekst źródłaHussein, Ola, Feras Alali, Ala‐Eddin Al Mustafa i Ashraf Khalil. "Development of Novel Chalcone Analogs as Potential Multi-Targeted Therapies for Castration-Resistant Prostate Cancer". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0114.
Pełny tekst źródłaVieira, Daniella Serafin Couto, Laura Otto Walter, Ana Carolina Rabello de Moraes, João Péricles da Silva Jr i Maria Cláudia Santos Silva. "CROSS-SECTIONAL ANALYSIS OF CLINICAL AND MORPHOLOGICAL FACTORS OF BREAST CANCER IMMUNOPHENOTYPES: A COMPARATIVE STUDY OF TWO DIFFERENT METHODOLOGIES OVER A 24‑YEAR HISTORICAL SERIES". W Scientifc papers of XXIII Brazilian Breast Congress - 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s1043.
Pełny tekst źródłaBrewer, Bryson M., Yandong Gao, Rebecca M. Sappington i Deyu Li. "Microfluidic Molecular Trap: Probing Extracellular Signaling by Selectively Blocking Exchange of Specific Molecules in Cell-Cell Interactions". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64489.
Pełny tekst źródłaHussein, Ola, Feras Alali, Ala-Eddin Al Moustafa i Ashraf Khalil. "Design, Synthesis and Biological Evaluation of Novel Chalcone Analogs as Potential Therapeutic Agents for Castration-Resistant Prostate Cancer". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0179.
Pełny tekst źródłaImai, Yohsuke, Hitoshi Kondo, Young Ho Kang, Takuji Ishikawa, Chwee Teck Lim i Takami Yamaguchi. "A Numerical Model of Adhesion Property of Malaria Infected Red Blood Cells in Micro Scale Blood Flows". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206456.
Pełny tekst źródłaRaporty organizacyjne na temat "Protein targeted lead molecule"
Gafni, Yedidya, i Vitaly Citovsky. Molecular interactions of TYLCV capsid protein during assembly of viral particles. United States Department of Agriculture, kwiecień 2007. http://dx.doi.org/10.32747/2007.7587233.bard.
Pełny tekst źródłaTzfira, Tzvi, Michael Elbaum i Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, grudzień 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Pełny tekst źródłaLapidot, Moshe, i Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604274.bard.
Pełny tekst źródłaOhad, Nir, i Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, styczeń 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Pełny tekst źródłaWilson, Thomas E., Avraham A. Levy i Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, marzec 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Pełny tekst źródłaCitovsky, Vitaly, i Yedidya Gafni. Suppression of RNA Silencing by TYLCV During Viral Infection. United States Department of Agriculture, grudzień 2009. http://dx.doi.org/10.32747/2009.7592126.bard.
Pełny tekst źródłaMeir, Shimon, Michael S. Reid, Cai-Zhong Jiang, Amnon Lers i Sonia Philosoph-Hadas. Molecular Studies of Postharvest Leaf and Flower Senescence. United States Department of Agriculture, styczeń 2011. http://dx.doi.org/10.32747/2011.7592657.bard.
Pełny tekst źródłaGafni, Yedidya, i Vitaly Citovsky. Inactivation of SGS3 as Molecular Basis for RNA Silencing Suppression by TYLCV V2. United States Department of Agriculture, listopad 2013. http://dx.doi.org/10.32747/2013.7593402.bard.
Pełny tekst źródłaTucker, Mark L., Shimon Meir, Amnon Lers, Sonia Philosoph-Hadas i Cai-Zhong Jiang. Elucidation of signaling pathways that regulate ethylene-induced leaf and flower abscission of agriculturally important plants. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7597929.bard.
Pełny tekst źródłaGafni, Yedidya, Moshe Lapidot i Vitaly Citovsky. Dual role of the TYLCV protein V2 in suppressing the host plant defense. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7597935.bard.
Pełny tekst źródła